ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 11
  • 12
    Publication Date: 2021-02-08
    Description: Depressurizing a gas hydrate reservoir to extract methane induces high effective stresses that act to compress the reservoir. Predicting whether a gas hydrate reservoir is viable as an energy resource requires enhanced understanding of the reservoir's compressibility and susceptibility to particle crushing in response to elevated effective stress because of their impact on the long-term permeability and geomechanical stability of the reservoir. This study investigates physical and geomechanical properties of natural sediments with and without tetrahydrofuran (THF) hydrate subjected to high effective stresses of up to 25 MPa. Experimental results show the stiffness of hydrate-free sediments is mainly governed by the stress state and history, while the stiffness of hydrate-bearing sediments reflects both the grain supporting nature of the interconnected hydrate phase and stress effects. The Poisson's ratio of hydrate-bearing sediments at low stresses is dominated by the Poisson's ratio of the interconnected pore-filling phases, and dominated at high stresses by elastic properties of both the skeleton and pore-filling phases. The stress-void ratio responses of hydrate-bearing sediments above the pre-consolidation stress yields a slightly convex-downward trend, suggesting compressibility is influenced by the stiffness of THF hydrate and sediment grains rather than only by void space reduction. The shape of the compression index (Cc) trend may be attributed to an increasing effective gas hydrate saturation as the total pore volume decreases under loading. The results also show that the presence of THF hydrate in sediments can mitigate particle crushing by suppressing particle rearrangement and supporting a portion of the load that would otherwise have to be carried by the sediment. Therefore, the loss of hydrate crystals during gas production may exacerbate sand crushing.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2021-02-08
    Description: Gas and water permeability through hydrate-bearing sediments essentially governs the economic feasibility of gas production from gas hydrate deposits. Characterizing a reservoir's permeability can be difficult because even collocated permeability measurements can vary by 4–5 orders of magnitude, due partly to differences between how various testing methods inherently measure permeability in different directions and at different scales. This study uses a customized flow anisotropy cell to investigate geomechanical and hydrological properties of hydrate-bearing sediments focusing on permeability anisotropy (i.e., horizontal, kh, to vertical, kv, permeability ratio) and relative permeability. Two cores recovered during India's National Gas Hydrate Program Expedition 02 (NGHP-02) are tested in this study. Near in situ effective vertical stress, ∼ 2 MPa, the permeability anisotropy is approximately kh/kv = 1.86 for the “seal core” (from a fine-grained non-reservoir overburden sedimentary section) and kh/kv = 4.24 for the gas hydrate reservoir core with tetrahydrofuran (THF) hydrate saturation Sh = 0.8. Permeability anisotropy increases exponentially with effective vertical stress, as described by kh/kv = α(σv/MPa)β, with α = 1.6, β = 0.22 for seal sediment and α = 3, β = 0.5 for THF hydrate-bearing sediment. Results imply the measured permeability from permeameter tests with vertical flow may underestimate the reservoir's flow performance, which is mainly horizontal (radial) toward a vertical well. Hydrate in sediment increases the gas-entry pressure and residual water saturation, but decreases the water retention curve's shape factor (m), resulting in a steeper curve. Distributions of available pore space sizes for flow in sediment with and without THF hydrate (Sh = 0.8) follow a log-normal distribution. Hydrate formation decreases the apparent mean pore size from ∼10 μm to ∼2 μm, without evidently changing the pore size distribution's standard deviation. Gas hydrate dissociation increases effective permeability and relative permeability to gas.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2021-02-08
    Description: Physical properties of the sediment directly overlying a gas hydrate reservoir provide important controls on the effectiveness of depressurizing that reservoir to extract methane from gas hydrate as an energy resource. The permeability of overlying sediment determines if a gas hydrate reservoir's upper contact will provide an effective seal that enables efficient reservoir depressurization. Compressibility, stiffness and strength indicate how overlying sediment will deform as the in situ stress changes during production, providing engineering data for well designs. Assessing these properties requires minimally-disturbed sediment. India's National Gas Hydrates Program Expedition 2 (NGHP-02) provided an opportunity to study these seal sediment properties, reducing disturbance from gas exsolution and bubble growth by collecting a pressure core from the seal sediment just above the primary gas hydrate reservoir at Site NGHP-02-08 in Area C of the Krishna-Godavari Basin. The effective stress chamber (ESC) and the direct shear chamber (DSC) devices in the suite of Pressure Core Characterization Tools (PCCTs) were used to measure permeability, compressibility, stiffness and shear strength at the in situ vertical stress. Geotechnical properties of the predominantly fine-grained seal layer at in situ vertical stress are in typical clay sediment ranges, with low measured permeability (0.02 mD), high compressibility (Cc = 0.26–0.33) and low shear strength (404 kPa). Though pressure and temperature were maintained throughout the collection and measurement process to stabilize gas hydrate, the lack of effective stress in the pressure core storage chamber and the chamber pressurization with methane-free water caused core expansion and gas hydrate in a thin coarser-grained layer to dissolve. The PCCTs can reapply in situ stress with incremental loading steps during a consolidation test to account for sediment compaction. Gas hydrate dissolution can be limited by storing cores just above freezing temperatures, and by using solid spacers to reduce the storage chamber's free volume.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2022-05-25
    Description: This paper is not subject to U.S. copyright. The definitive version was published in Marine and Petroleum Geology 66 (2015): 434-450, doi:10.1016/j.marpetgeo.2015.02.033.
    Description: Natural hydrate-bearing sediments from the Nankai Trough, offshore Japan, were studied using the Pressure Core Characterization Tools (PCCTs) to obtain geomechanical, hydrological, electrical, and biological properties under in situ pressure, temperature, and restored effective stress conditions. Measurement results, combined with index-property data and analytical physics-based models, provide unique insight into hydrate-bearing sediments in situ. Tested cores contain some silty-sands, but are predominantly sandy- and clayey-silts. Hydrate saturations Sh range from 0.15 to 0.74, with significant concentrations in the silty-sands. Wave velocity and flexible-wall permeameter measurements on never-depressurized pressure-core sediments suggest hydrates in the coarser-grained zones, the silty-sands where Sh exceeds 0.4, contribute to soil-skeletal stability and are load-bearing. In the sandy- and clayey-silts, where Sh 〈 0.4, the state of effective stress and stress history are significant factors determining sediment stiffness. Controlled depressurization tests show that hydrate dissociation occurs too quickly to maintain thermodynamic equilibrium, and pressure–temperature conditions track the hydrate stability boundary in pure-water, rather than that in seawater, in spite of both the in situ pore water and the water used to maintain specimen pore pressure prior to dissociation being saline. Hydrate dissociation accompanied with fines migration caused up to 2.4% vertical strain contraction. The first-ever direct shear measurements on never-depressurized pressure-core specimens show hydrate-bearing sediments have higher sediment strength and peak friction angle than post-dissociation sediments, but the residual friction angle remains the same in both cases. Permeability measurements made before and after hydrate dissociation demonstrate that water permeability increases after dissociation, but the gain is limited by the transition from hydrate saturation before dissociation to gas saturation after dissociation. In a proof-of-concept study, sediment microbial communities were successfully extracted and stored under high-pressure, anoxic conditions. Depressurized samples of these extractions were incubated in air, where microbes exhibited temperature-dependent growth rates.
    Description: PCCTs were developed with funding to Georgia Tech from the DOE/Chevron Joint Industry Project (JIP), with additional funds from the Joint Oceanographic Institutions, Inc. The JIP also funded the Georgia Tech participation in Sapporo. USGS participation in Sapporo was funded through a technical assistance agreement with Chevron (TAA-12-2135/CW928359). Some USGS developments on the IPTC were funded under Interagency Agreement DE-FE0002911 with the U.S. Department of Energy, with additional support from the U.S. Geological Survey. Core acquisition and Japanese participation in this study was supported by the Research Consortium for Methane Hydrate Resources in Japan (MH21 Research Consortium) to carry out Japan's Methane Hydrate R&D Program conducted by the Ministry of Economy, Trade and Industry (METI).
    Keywords: Methane hydrate ; Hydrate-bearing sediment ; Nankai Trough ; Physical properties ; Pressure core
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...