ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 11
    facet.materialart.
    Unknown
    Elsevier
    In:  Deep Sea Research Part I: Oceanographic Research Papers, 53 (3). pp. 528-546.
    Publication Date: 2017-06-08
    Description: As a component of the meridional overturning variability experiment in the tropical North Atlantic, a four-year-long time series of meridional transport of North Atlantic deep water has been obtained from moored end point measurements of density and bottom pressure. This study presents a quality assessment of the measurement elements. Rigorous pre- and post- deployment in situ calibration of the density sensors and subsequent data processing establish an accuracy of O(1.5 Sv) in internal transport in the 1200–5000 dbar range at subinertial time scales. A similar accuracy is reached in the bottom pressure-derived external transport fluctuations. However, for pressure, variability with periods longer than a deployment's duration (presently about one year) is not measurable. This effect is demonstrated using numerical simulations and a possible solution for detecting long-term external transport changes is presented.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2020-08-05
    Description: Five years of data from a line of dynamic height moorings (DHM), bottom-pressure recorders (BPR), and pressure-equipped inverted echo sounders (PIES) near the Atlantic Ocean western boundary at 26.5°N are used to evaluate the structure and variability of the Deep Western Boundary Current (DWBC) during 2004–2009. Comparisons made between transports estimated from the DHM+BPR and those made by the PIES demonstrate that the two systems are collecting equivalent volume transport information (correlation coefficient r=0.96, root-mean-square difference=6 Sv; 1 Sv=106 m3 s−1). Integrated to ∼450 km off from the continental shelf and between 800 and 4800 dbar, the DWBC has a mean transport of approximately 32 Sv and a standard deviation during these five years of 16 Sv. Both the barotropic (full-depth vertical mean) and baroclinic flows have significant variability (changes exceeding 10 Sv) on time scales ranging from a few days to months, with the barotropic variations being larger and more energetic at all time scales. The annual cycle of the deep transport is highly dependent on the horizontal integration distance; integrating ∼100 km offshore yields an annual cycle of roughly similar magnitude but shifted in phase relative to that found from current meter arrays in the 1980–1990s, while the annual cycle becomes quite weak when integrating ∼450 km offshore. Variations in the DWBC transport far exceed those of the total basin-wide Meridional Overturning Circulation (standard deviations of 16 Sv vs. 5 Sv). Transport integrated in the deep layer out to the west side of the Mid-Atlantic Ridge still demonstrates a surprisingly high variance, indicating that some compensation of the western basin deep variability must occur in the eastern basin.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2020-08-05
    Description: The rapid climate change programme (RAPID) has established a prototype system to continuously observe the strength and structure of the Atlantic meridional overturning circulation (MOC) at 26.5 degrees N. Here we provide a detailed description of the RAPID-MOC monitoring array and how it has evolved during the first four deployment years, as well as an overview of the main findings so far. The RAPID-MOC monitoring array measures: (1) Gulf Stream transport through Florida Strait by cable and repeat direct velocity measurements; (2) Ekman transports by satellite scatterometer measurements; (3) Deep Western Boundary Currents by direct velocity measurements; (4) the basin wide interior baroclinic circulation from moorings measuring vertical profiles of density at the boundaries and on either side of the Mid-Atlantic Ridge; and (5) barotropic fluctuations using bottom pressure recorders. The array became operational in late March 2004 and is expected to continue until at least 2014. The first 4 years of observations (April 2004-April 2008) have provided an unprecedented insight into the MOC structure and variability. We show that the zonally integrated meridional flow tends to conserve mass, with the fluctuations of the different transport components largely compensating at periods longer than 10 days. We take this as experimental confirmation of the monitoring strategy, which was initially tested in numerical models. The MOC at 26.5 degrees N is characterised by a large variability even on timescales as short as weeks to months. The mean maximum MOC transport for the first 4 years of observations is 18.7 Sv with a standard deviation of 4.8 Sv. The mechanisms causing the MOC variability are not yet fully understood. Part of the observed MOC variability consists of a seasonal cycle, which can be linked to the seasonal variability of the wind stress curl close to the African coast. Close to the western boundary, fluctuations in the Gulf Stream and in the North Atlantic Deep Water (NADW) coincide with bottom pressure variations at the western margin, thus suggesting a barotropic compensation. Ongoing and future research will put these local transport variations into a wider spatial and climatic context. (C) 2011 Elsevier Ltd. All rights reserved.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    facet.materialart.
    Unknown
    Elsevier
    In:  Deep Sea Research Part I: Oceanographic Research Papers, 86 . pp. 82-93.
    Publication Date: 2017-08-17
    Description: Highlights: • We present results from a current meter array and hydrographic observations on the eastern flank of Reykjanes Ridge, Iceland Basin. • The June 2000–August 2002 average volume transport for the Iceland Scotland Overflow Water (ISOW) plume is 3.8±0.6 Sv. • Our flux estimate compares favorably with historical observations and recent model results. • Downstream drainage of ISOW through Charlie–Gibbs Fracture Zone only accounts for 60% of our ISOW transport estimate • Periods of stronger flow coincide with a higher fraction of ambient water in the ISOW plume. Abstract: Here we present results from a combined moored current meter/hydrography array deployed within the Iceland Scotland Overflow Water (ISOW) plume on the eastern flank of Reykjanes Ridge approximately 1000 km downstream of Faroe Bank Channel (FBC) between June 2000 and August 2002. Based on the array measurements during this period the ISOW plume exhibited a time mean volume transport of 3.8±0.6 Sv (standard error, 1 Sv=106 m3/s). The transport estimate favorably compares with other recent estimates obtained by different methods, confirming that the fate of the ISOW plume downstream of the array is far from being fully understood. Historical observations show that drainage of ISOW through Charlie–Gibbs Fracture Zone (CGFZ) only amounts to 60% of our upstream transport estimate. To date, no reliable transport estimates of the fractions of ISOW recirculating within the Iceland Basin or being drained through fracture zones other than CGFZ do exist. Our observed 2-years-long transport time series show pronounced subseasonal variability with a standard deviation of 1.3 Sv. Simultaneous hydrographic observations reveal, that temporal changes in the strength of the flow go along with changes in the water mass properties. Periods of stronger flow within the ISOW plume coincide with a reduction in salinity.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    facet.materialart.
    Unknown
    Elsevier
    In:  Deep Sea Research Part I: Oceanographic Research Papers, 52 (8). pp. 1542-1567.
    Publication Date: 2016-11-01
    Description: Efficient monitoring of large-scale current systems for climate research requires the development of new techniques to estimate ocean transports. Here, a methodology for continuous estimation of dynamic height profiles and geostrophic currents from moored temperature sensors is presented. The technique is applied to moorings deployed in the Atlantic Deep Western Boundary Current at 26.5°N, off Abaco, the Bahamas (WOCE ACM-1 array). Relative geostrophic currents are referenced using bottom pressure sensors and available shipboard direct velocity (lowered-ADCP) sections over the period of the deployment, to obtain a time series of absolute volume transport. Comparison with direct velocity measurements from a complete array of current meters shows good agreement for the mean transport and its variablity on time scales longer than 10 days, but larger variability in the current meter derived transport at time scales shorter than 10 days. A rigorous error analysis assesses the contributions of various error sources in the geostrophic as well as direct transport estimates. Low-frequency drift of the bottom pressure sensors is found to be the largest error source in the geostrophic transport estimates and recommendations for improvement of the technique and related measurement technologies are made.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    facet.materialart.
    Unknown
    Elsevier
    In:  In: Climate Change: Observed Impacts on Planet Earth. , ed. by Letcher, T. Elsevier, Amsterdam, pp. 349-367. ISBN 978-0-444-53301-2
    Publication Date: 2019-09-23
    Type: Book chapter , PeerReviewed
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    facet.materialart.
    Unknown
    Elsevier
    In:  In: Climate Change. Elsevier, Amsterdam, The Netherlands, pp. 219-249. 3.ed. ISBN 978-0-12-821575-3
    Publication Date: 2022-01-06
    Description: The oceans' role in climate and climate change is manifold. The Ocean circulation transports large amounts of heat and freshwater on hemispheric space scales which have significant impacts on regional climate in the ocean itself but also noticeable consequences via atmospheric teleconnections on land. Due to the high heat capacity of seawater and the relatively slow ocean circulation, the oceans provide a significant “memory” for the climate system. Bodies of water that descend from the sea surface may reside in the ocean interior for decades and centuries, while preserving their temperature and salinity signature, before they surface again to interact with the overlying atmosphere. The residence time of water in the atmosphere is about ten days and the persistence of dynamical states of the atmospheric circulation may last up to a few weeks. Thus, on long time scales ocean dynamics becomes important for climate, which implies that climate variations and climate change can only partially be understood without consideration of ocean dynamics and the intricate ocean-atmosphere interaction. Since 1960 the heat uptake of the oceans has been 20 times larger than that of the atmosphere. Thus the oceans have been able to reduce the otherwise much more pronounced temperature rise in the atmospheric climate. Also, over the last 200 years the oceans have absorbed about half of the CO2 release into the atmosphere by human activities (fossil fuel combustion, de-forestation, cement production), thereby reducing the direct effect of greenhouse gases on atmospheric temperatures.This chapter aims to describe and explain fundamental principles of the ocean dynamics and gathers information about past, present and future states the world’s ocean and its role in climate change.
    Type: Book chapter , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2023-11-08
    Description: In this chapter the role of the ocean on climate and climate change is discussed in terms of the properties of oceans and in terms of the tools available to oceanographers. The details of the Atlantic Meridional Overturning Circulation (AMOC) are described with special reference to motivation, driving mechanisms, heat transport and the ocean's uptake of carbon and the ventilation of the deep ocean. The past changes of the AMOC and the Atlantic climate are also discussed. The chapter ends with a discussion of three questions: • Why should the AMOC change as a result of climate change? • Can we detect changes in the AMOC? • Is the AMOC already changing as a result of climate change?
    Type: Book chapter , PeerReviewed
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    facet.materialart.
    Unknown
    Elsevier
    In:  EPIC3Climate Change, Ocean Current Changes, Amsterdam, Elsevier, pp. 253-269
    Publication Date: 2016-12-05
    Repository Name: EPIC Alfred Wegener Institut
    Type: Inbook , peerRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...