ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 11
    Publication Date: 2013-05-08
    Description: Accurate assessments of anthropogenic carbon dioxide (CO2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere is important to better understand the global carbon cycle, support the climate policy process, and project future climate change. Present-day analysis requires the combination of a range of data, algorithms, statistics and model estimates and their interpretation by a broad scientific community. Here we describe datasets and a methodology developed by the global carbon cycle science community to quantify all major components of the global carbon budget, including their uncertainties. We discuss changes compared to previous estimates, consistency within and among components, and methodology and data limitations. CO2 emissions from fossil fuel combustion and cement production (EFF) are based on energy statistics, while emissions from Land-Use Change (ELUC), including deforestation, are based on combined evidence from land cover change data, fire activity in regions undergoing deforestation, and models. The global atmospheric CO2 concentration is measured directly and its rate of growth (GATM) is computed from the concentration. The mean ocean CO2 sink (SOCEAN) is based on observations from the 1990s, while the annual anomalies and trends are estimated with ocean models. Finally, the global residual terrestrial CO2 sink (SLAND) is estimated by the difference of the other terms. For the last decade available (2002–2011), EFF was 8.3 ± 0.4 PgC yr−1, ELUC 1.0 ± 0.5 PgC yr−1, GATM 4.3 ± 0.1 PgC yr−1, SOCEAN 2.5 ± 0.5 PgC yr−1, and SLAND 2.6 ± 0.8 PgC yr−1. For year 2011 alone, EFF was 9.5 ± 0.5 PgC yr−1, 3.0 percent above 2010, reflecting a continued trend in these emissions; ELUC was 0.9 ± 0.5 PgC yr−1, approximately constant throughout the decade; GATM was 3.6 ± 0.2 PgC yr−1, SOCEAN was 2.7 ± 0.5 PgC yr−1, and SLAND was 4.1 ± 0.9 PgC yr−1. GATM was low in 2011 compared to the 2002–2011 average because of a high uptake by the land probably in response to natural climate variability associated to La Niña conditions in the Pacific Ocean. The global atmospheric CO2 concentration reached 391.31 ± 0.13 ppm at the end of year 2011. We estimate that EFF will have increased by 2.6% (1.9–3.5%) in 2012 based on projections of gross world product and recent changes in the carbon intensity of the economy. All uncertainties are reported as ±1 sigma (68% confidence assuming Gaussian error distributions that the real value lies within the given interval), reflecting the current capacity to characterise the annual estimates of each component of the global carbon budget. This paper is intended to provide a baseline to keep track of annual carbon budgets in the future. All data presented here can be downloaded from the Carbon Dioxide Information Analysis Center (doi:10.3334/CDIAC/GCP_V2013). Global carbon budget 2013
    Print ISSN: 1866-3508
    Electronic ISSN: 1866-3516
    Topics: Geosciences
    Published by Copernicus
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2013-08-08
    Description: Emission metrics are used to compare the climate effect of the emission of different species, such as carbon dioxide (CO2) and methane (CH4). The most common metrics use linear impulse response functions (IRFs) derived from a single more complex model. There is currently little understanding on how IRFs vary across models, and how the model variation propagates into the metric values. In this study, we first derive CO2 and temperature IRFs for a large number of complex models participating in different intercomparison exercises, synthesizing the results in distributions representing the variety in behaviour. The derived IRF distributions differ considerably, which is partially related to differences among the underlying models, and partially to the specificity of the scenarios used (experimental setup). In a second part of the study, we investigate how differences among the IRFs impact the estimates of global warming potential (GWP), global temperature change potential (GTP) and integrated global temperature change potential (iGTP) for time horizons between 20 and 500 yr. Within each derived CO2 IRF distribution, underlying model differences give similar spreads on the metrics in the range of −20 to +40% (5–95% spread), and these spreads are similar among the three metrics. GTP and iGTP metrics are also impacted by variation in the temperature IRF. For GTP, this impact depends strongly on the lifetime of the species and the time horizon. The GTP of black carbon shows spreads of up to −60 to +80% for time horizons to 100 yr, and even larger spreads for longer time horizons. For CH4 the impact from variation in the temperature IRF is still large, but it becomes smaller for longer-lived species. The impact from variation in the temperature IRF on iGTP is small and falls within a range of ±10% for all species and time horizons considered here. We have used the available data to estimate the IRFs, but we suggest the use of tailored intercomparison projects specific for IRFs in emission metrics. Intercomparison projects are an effective means to derive an IRF and its model spread for use in metrics, but more detailed analysis is required to explore a wider range of uncertainties. Further work can reveal which parameters in each IRF lead to the largest uncertainties, and this information may be used to reduce the uncertainty in metric values.
    Print ISSN: 2190-4979
    Electronic ISSN: 2190-4987
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2015-05-27
    Description: Several studies have connected emissions of greenhouse gases to economic and trade data to quantify the causal chain from consumption to emissions and climate change. These studies usually combine data and models originating from different sources, making it difficult to estimate uncertainties along the entire causal chain. We estimate uncertainties in economic data, multi-pollutant emission statistics, and metric parameters, and use Monte Carlo analysis to quantify contributions to uncertainty and to determine how uncertainty propagates to estimates of global temperature change from regional and sectoral territorial- and consumption-based emissions for the year 2007. We find that the uncertainties are sensitive to the emission allocations, mix of pollutants included, the metric and its time horizon, and the level of aggregation of the results. Uncertainties in the final results are largely dominated by the climate sensitivity and the parameters associated with the warming effects of CO2. Based on our assumptions, which exclude correlations in the economic data, the uncertainty in the economic data appears to have a relatively small impact on uncertainty at the national level in comparison to emissions and metric uncertainty. Much higher uncertainties are found at the sectoral level. Our results suggest that consumption-based national emissions are not significantly more uncertain than the corresponding production-based emissions since the largest uncertainties are due to metric and emissions which affect both perspectives equally. The two perspectives exhibit different sectoral uncertainties, due to changes of pollutant compositions. We find global sectoral consumption uncertainties in the range of ±10 to ±27 % using the Global Temperature Potential with a 50-year time horizon, with metric uncertainties dominating. National-level uncertainties are similar in both perspectives due to the dominance of CO2 over other pollutants. The consumption emissions of the top 10 emitting regions have a broad uncertainty range of ±9 to ±25 %, with metric and emission uncertainties contributing similarly. The absolute global temperature potential (AGTP) with a 50-year time horizon has much higher uncertainties, with considerable uncertainty overlap for regions and sectors, indicating that the ranking of countries is uncertain.
    Print ISSN: 2190-4979
    Electronic ISSN: 2190-4987
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2012-09-03
    Description: Emission metrics are necessary to determine the relative climate effect of emissions of different species, such as between CO2 and CH4. Most emission metrics are based on Impulse Response Functions (IRFs) derived from singe models. There is currently very little understanding on how IRFs vary across models, and how the model spread propagates into the metric values. In this study, we first derive three CO2 IRF distributions from Carbon-Cycle models in the inter-comparison projects C4MIP and LTMIP, and three temperature IRF distributions from AOGCMs in the inter-comparison projects CMIP3 and CMIP5. Each distribution is based on the behaviour of several models, and takes into account their spread. The derived IRF distributions differ considerably, which is partially related to differences among the underlying models, but also to the specific scenarios (experimental setup) used in the inter-comparison exercises. For example, the very high emission pulse in LTMIP leads to considerably higher CO2 IRFs, while the abrupt forcing scenario in CMIP5 leads to a relatively high temperature IRF the first four to five years. The spreads within the different IRF distributions are however rather similar. In a second part of the study, we investigate how differences among the IRFs then impact GWP, GTP and iGTP emission metric values for time horizons up to 100 yr. The spread in the CO2 IRFs causes rather similar impacts in all three metrics. The LTMIP IRF gives 20–35% lower metric values, while the C4MIP IRFs give up to 40% higher values for short time horizons shifting to lower values for longer time horizons. Within each derived CO2IRF distribution, underlying model differences give similar spreads on the metrics in the range of −15% to 25% (10–90% spread). The GTP and iGTP metrics are also impacted by spread in the temperature IRFs, and this impact differs strongly between both metrics. For GTP, the impact of the spread is rather strong for species with a short life time. For BC, depending on the time horizon, 50% lower to 85% higher values can be found using the CMIP5 IRF, and slightly lower variations are found when using the CMIP3 IRFs (10% lower to 40% higher). For CH4 the impact from spread in the temperature IRF is still considerable, but it becomes small for longer-lived species. On the other hand, the impact from spread in the temperature IRF on iGTP is very small for all species for time horizons up to 100 yr as it is an integrated metric. Finally, as part of the spread in IRFs is caused by the specific setup of the inter-comparison exercises, there is a need for dedicated inter-comparison exercises to derive CO2 and temperature IRFs.
    Electronic ISSN: 2190-4995
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2012-08-30
    Description: In the context of climate change, emissions of different species (e.g. carbon dioxide and methane) are not directly comparable since they have different radiative efficiencies and lifetimes. Since comparisons via detailed climate models are computationally expensive and complex, emission metrics were developed to allow a simple and straight forward comparison of the estimated climate impacts of the emissions of different species. Because emission metrics depend on a variety of choices, a variety of different metrics may be used and with different time-horizons. In this paper, we present analytical expressions and describe how to calculate common emission metrics for different species. We include the climate metrics radiative forcing, integrated radiative forcing, temperature change, and integrated temperature change in both absolute form and normalized to a reference gas. We consider pulse emissions, sustained emissions, and emission scenarios. The species are separated into three types: species with a simple exponential decay, CO2 which has a complex decay over time, and ozone pre-cursors (NOx, CO, VOC). Related issues are also discussed, such as deriving Impulse Response Functions, simple modifications to metrics, and regional dependencies. We perform various applications to highlight key applications of simple emission metrics, which show that emissions of CO2 are important regardless of what metric and time horizon is used, but that the importance of SLCFs varies greatly depending on the metric choices made.
    Electronic ISSN: 2190-4995
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2014-09-09
    Description: Several studies have connected emissions of greenhouse gases to economic and trade data to quantify the causal chain from consumption to emissions and climate change. These studies usually combine data and models originating from different sources, making it difficult to estimate uncertainties in the end results. We estimate uncertainties in economic data, multi-pollutant emission statistics and metric parameters, and use Monte Carlo analysis to quantify contributions to uncertainty and to determine how uncertainty propagates to estimates of global temperature change from regional and sectoral territorial- and consumption-based emissions for the year 2007. We find that the uncertainties are sensitive to the emission allocations, mix of pollutants included, the metric and its time horizon, and the level of aggregation of the results. Uncertainties in the final results are largely dominated by the climate sensitivity and the parameters associated with the warming effects of CO2. The economic data have a relatively small impact on uncertainty at the global and national level, while much higher uncertainties are found at the sectoral level. Our results suggest that consumption-based national emissions are not significantly more uncertain than the corresponding production based emissions, since the largest uncertainties are due to metric and emissions which affect both perspectives equally. The two perspectives exhibit different sectoral uncertainties, due to changes of pollutant compositions. We find global sectoral consumption uncertainties in the range of ±9–±27% using the global temperature potential with a 50 year time horizon, with metric uncertainties dominating. National level uncertainties are similar in both perspectives due to the dominance of CO2 over other pollutants. The consumption emissions of the top 10 emitting regions have a broad uncertainty range of ±9–±25%, with metric and emissions uncertainties contributing similarly. The Absolute global temperature potential with a 50 year time horizon has much higher uncertainties, with considerable uncertainty overlap for regions and sectors, indicating that the ranking of countries is uncertain.
    Electronic ISSN: 2190-4995
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2012-09-12
    Description: This paper reports a study of the full carbon (C-CO2) budget of the Australian continent, focussing on 1990–2011 in the context of estimates over two centuries. The work is a contribution to the RECCAP (REgional Carbon Cycle Assessment and Processes) project, as one of numerous regional studies being synthesised in RECCAP. In constructing the budget, we estimate the following component carbon fluxes: Net Primary Production (NPP); Net Ecosystem Production (NEP); fire; Land Use Change (LUC); riverine export; dust export; harvest (wood, crop and livestock) and fossil fuel emissions (both territorial and non-territorial). The mean NEP reveals that climate variability and rising CO2 contributed 12 ± 29 (1σ error on mean) and 68 ± 35 Tg C yr−1 respectively. However these gains were partially offset by fire and LUC (along with other minor fluxes), which caused net losses of 31 ± 5 Tg C yr−1 and 18 ± 7 Tg C yr−1 respectively. The resultant Net Biome Production (NBP) of 31 ± 35 Tg C yr−1 offset fossil fuel emissions (95 ± 6 Tg C yr−1) by 32 ± 36%. The interannual variability (IAV) in the Australian carbon budget exceeds Australia's total carbon emissions by fossil fuel combustion and is dominated by IAV in NEP. Territorial fossil fuel emissions are significantly smaller than the rapidly growing fossil fuel exports: in 2009–2010, Australia exported 2.5 times more carbon in fossil fuels than it emitted by burning fossil fuels.
    Print ISSN: 1810-6277
    Electronic ISSN: 1810-6285
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2012-08-09
    Description: The responses of carbon dioxide (CO2) and other climate variables to an emission pulse of CO2 into the atmosphere are often used to compute the Global Warming Potential (GWP) and Global Temperature change Potential (GTP), to characterize the response time scales of Earth System models, and to build reduced-form models. In this carbon cycle-climate model intercomparison project, which spans the full model hierarchy, we quantify responses to emission pulses of different magnitudes injected under different conditions. The CO2 response shows the known rapid decline in the first few decades followed by a millennium-scale tail. For a 100 Gt C emission pulse, 24 ± 10% is still found in the atmosphere after 1000 yr; the ocean has absorbed 60 ± 18% and the land the remainder. The response in global mean surface air temperature is an increase by 0.19 ± 0.10 °C within the first twenty years; thereafter and until year 1000, temperature decreases only slightly, whereas ocean heat content and sea level continue to rise. Our best estimate for the Absolute Global Warming Potential, given by the time-integrated response in CO2 at year 100 times its radiative efficiency, is 92.7 × 10−15 yr W m−2 per kg CO2. This value very likely (5 to 95% confidence) lies within the range of (70 to 115) × 10−15 yr W m−2 per kg CO2. Estimates for time-integrated response in CO2 published in the IPCC First, Second, and Fourth Assessment and our multi-model best estimate all agree within 15%. The integrated CO2 response is lower for pre-industrial conditions, compared to present day, and lower for smaller pulses than larger pulses. In contrast, the response in temperature, sea level and ocean heat content is less sensitive to these choices. Although, choices in pulse size, background concentration, and model lead to uncertainties, the most important and subjective choice to determine AGWP of CO2 and GWP is the time horizon.
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2011-02-09
    Description: The Arctic sea-ice is retreating faster than predicted by climate models and could become ice free during summer this century. The reduced sea-ice extent may effectively "unlock" the Arctic Ocean to increased human activities such as transit shipping and expanded oil and gas production. Travel time between Europe and the north Pacific Region can be reduced by up to 50% with low sea-ice levels and the use of this route could increase substantially as the sea-ice retreats. Oil and gas activities already occur in the Arctic region and given the large undiscovered petroleum resources increased activity could be expected with reduced sea-ice. We use a detailed global energy market model and a bottom-up shipping model with a sea-ice module to construct emission inventories of Arctic shipping and petroleum activities in 2030 and 2050. The emission inventories are on a 1× 1 degree grid and cover both short-lived pollutants and ozone pre-cursors (SO2, NOx, CO, NMVOC, BC, OC) and the long-lived greenhouse gases (CO2, CH4, N2O). We find rapid growth in transit shipping due to increased profitability with the shorter transit times compensating for increased costs in traversing areas of sea-ice. Oil and gas production remains relatively stable leading to reduced emissions from emission factor improvements. The location of oil and gas production moves into locations requiring more ship transport relative to pipeline transport, leading to rapid emissions growth from oil and gas transport via ship. Our emission inventories for the Arctic region will be used as input into chemical transport, radiative transfer, and climate models to quantify the role of Arctic activities in climate change compared to similar emissions occurring outside of the Arctic region.
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2013-02-07
    Description: This paper reports a study of the full carbon (C-CO2) budget of the Australian continent, focussing on 1990–2011 in the context of estimates over two centuries. The work is a contribution to the RECCAP (REgional Carbon Cycle Assessment and Processes) project, as one of numerous regional studies. In constructing the budget, we estimate the following component carbon fluxes: net primary production (NPP); net ecosystem production (NEP); fire; land use change (LUC); riverine export; dust export; harvest (wood, crop and livestock) and fossil fuel emissions (both territorial and non-territorial). Major biospheric fluxes were derived using BIOS2 (Haverd et al., 2012), a fine-spatial-resolution (0.05°) offline modelling environment in which predictions of CABLE (Wang et al., 2011), a sophisticated land surface model with carbon cycle, are constrained by multiple observation types. The mean NEP reveals that climate variability and rising CO2 contributed 12 ± 24 (1σ error on mean) and 68 ± 15 TgC yr−1, respectively. However these gains were partially offset by fire and LUC (along with other minor fluxes), which caused net losses of 26 ± 4 TgC yr−1 and 18 ± 7 TgC yr−1, respectively. The resultant net biome production (NBP) is 36 ± 29 TgC yr−1, in which the largest contributions to uncertainty are NEP, fire and LUC. This NBP offset fossil fuel emissions (95 ± 6 TgC yr−1) by 38 ± 30%. The interannual variability (IAV) in the Australian carbon budget exceeds Australia's total carbon emissions by fossil fuel combustion and is dominated by IAV in NEP. Territorial fossil fuel emissions are significantly smaller than the rapidly growing fossil fuel exports: in 2009–2010, Australia exported 2.5 times more carbon in fossil fuels than it emitted by burning fossil fuels.
    Print ISSN: 1726-4170
    Electronic ISSN: 1726-4189
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...