ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 11
    Publication Date: 2011-10-24
    Description: Bivalve shells can provide excellent archives of past environmental change but have not been used to interpret ocean acidification events. We investigated carbon, oxygen and trace element records from different shell layers in the mussels Mytilus galloprovincialis (from the Mediterranean) and M. edulis (from the Wadden Sea) combined with detailed investigations of the shell ultrastructure. Mussels from the harbour of Ischia (Mediterranean, Italy) were transplanted and grown in water with mean pHT 7.3 and mean pHT 8.1 near CO2 vents on the east coast of the island of Ischia. The shells of transplanted mussels were compared with M. edulis collected at pH ~8.2 from Sylt (German Wadden Sea). Most prominently, the shells recorded the shock of transplantation, both in their shell ultrastructure, textural and geochemical record. Shell calcite, precipitated subsequently under acidified seawater responded to the pH gradient by an in part disturbed ultrastructure. Geochemical data from all test sites show a strong metabolic effect that exceeds the influence of the low-pH environment. These field experiments showed that care is needed when interpreting potential ocean acidification signals because various parameters affect shell chemistry and ultrastructure. Besides metabolic processes, seawater pH, factors such as salinity, water temperature, food availability and population density all affect the biogenic carbonate shell archive.
    Print ISSN: 1810-6277
    Electronic ISSN: 1810-6285
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2012-05-29
    Description: Bivalve shells can provide excellent archives of past environmental change but have not been used to interpret ocean acidification events. We investigated carbon, oxygen and trace element records from different shell layers in the mussels Mytilus galloprovincialis combined with detailed investigations of the shell ultrastructure. Mussels from the harbour of Ischia (Mediterranean, Italy) were transplanted and grown in water with mean pHT 7.3 and mean pHT 8.1 near CO2 vents on the east coast of the island. Most prominently, the shells recorded the shock of transplantation, both in their shell ultrastructure, textural and geochemical record. Shell calcite, precipitated subsequently under acidified seawater responded to the pH gradient by an in part disturbed ultrastructure. Geochemical data from all test sites show a strong metabolic effect that exceeds the influence of the low-pH environment. These field experiments showed that care is needed when interpreting potential ocean acidification signals because various parameters affect shell chemistry and ultrastructure. Besides metabolic processes, seawater pH, factors such as salinity, water temperature, food availability and population density all affect the biogenic carbonate shell archive.
    Print ISSN: 1726-4170
    Electronic ISSN: 1726-4189
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2016-09-26
    Description: Biomineralised hard parts form the most important physical fossil record of past environmental conditions. However, living organisms are not in thermodynamic equilibrium with their environment and create local chemical compartments within their bodies where physiologic processes such as biomineralisation take place. Generating their mineralized hard parts most marine invertebrates thus produce metastable aragonite rather than the stable polymorph of CaCO3, calcite. After death of the organism, the physiological conditions which were present during biomineralisation are not sustained any further and the system moves toward inorganic equilibrium with the surrounding inorganic geological system. Thus, during diagenesis the original biogenic structure of aragonitic tissue disappears and is replaced by inorganic structural features. In order to understand the diagenetic replacement of biogenic aragonite to non-biogenic calcite, we subjected Arctica islandica mollusc shells to hydrothermal alteration experiments. Experimental conditions were between 100 °C and 175 °C with reaction durations between one and 84 days, and alteration fluids simulating meteoric and burial waters, respectively. Detailed microstructural and geochemical data were collected for samples altered at 100 °C (and at 0.1 MPa pressure) for 28 days and for samples altered at 175 °C (and at 0.9 MPa pressure) for 7 and 84 days, respectively. During hydrothermal alteration at 100 °C for 28 days, most but not all of the biopolymer matrix was destroyed, while shell aragonite and its characteristic microstructure was largely preserved. In all experiments below 175 °C there are no signs of a replacement reaction of shell aragonite to calcite in X-ray diffraction bulk analysis. At 175 °C the replacement reaction started after a dormant time of 4 days, and the original shell microstructure was almost completely overprinted by the aragonite to calcite replacement reaction after 10 days. Newly formed calcite nucleated at locations which were in contact with the fluid, at the shell surface, in the open pore system, and along growth lines. In the experiments with fluids simulating meteoric water, calcite crystals reached sizes up to 200 micrometres, while in the experiments with Mg-containing fluids the calcite crystals reached sizes up to one mm after 7 days of alteration. Aragonite is metastable at all applied conditions. A small bulk thermodynamic driving force exists for the transition to calcite, which is augmented by stresses induced by organic matrix and interface energies related to the nanoparticulate architecture of the biogenic aragonite. We attribute the sluggish replacement reaction to the inhibition of calcite nucleation in the temperature window from ca. 50 °C to ca. 170 °C, or, additionally, to the presence of magnesium. Correspondingly, in Mg2+-bearing solutions the newly formed calcite crystals are larger than in Mg2+-free solutions. Overall, the aragonite-calcite transition occurs via an interface-coupled dissolution-reprecipitation mechanism, which preserves morphologies down to the sub-micrometre scale and induces porosity in the newly formed phase. The absence of aragonite replacement by calcite at temperatures lower than 175 °C contributes to explain why aragonitic or bimineralic shells and skeletons have a good potential of preservation and a complete fossil record.
    Print ISSN: 1810-6277
    Electronic ISSN: 1810-6285
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2019-01-25
    Description: Short-term hypoxia in epeiric water masses is a common phenomenon of modern marine environments and causes mass mortality in coastal marine ecosystems. Here, we test the hypothesis that during the Early Aptian, platform-top hypoxia temporarily established in some of the vast epeiric seas of the Central Tethys and caused, combined with other stressors, significant changes in reefal ecosystems. Potentially interesting target examples include time intervals characterized by the demise of Lower Aptian rudist-coral communities and the establishment of microencruster facies as previously described from the Central and Southern Tethys and from the proto-North Atlantic domain. These considerations are relevant as previous work has predominantly focused on Early Aptian basinal anoxia in the context of the Oceanic Anoxic Event (OAE) 1a, whereas the potential expansion of the oxygen minimum zone in coeval shallow water environments is underexplored. Well known patterns in the δ13C record during OAE 1a allow for a sufficiently time-resolved correlation with previously studied locations. This paper presents and critically discusses the outcome of a multi-proxy study (e.g., REE, U isotopes and redox sensitive trace elements) applied to Lower Aptian shallow water carbonates today exposed in the Kanfanar Quarry in Istria, Croatia. These rocks were deposited on an extensive, isolated high in the Central Tethys surrounded by hemi-pelagic basins. Remarkably, during chemostratigraphic segment C2, the depletion of redox sensitive trace elements As, V, and Mo in platform carbonates, deposited in normal marine oxic waters, record the first occurrence of basinal, organic rich sediment deposition in which these elements are enriched. During the C3 segment, seawater oxygen depletion establishes on the platform top as indicated by the patterns in Ce/Ce* and uranium isotopes. Shifts in redox sensitive proxies coincide with the expansion of microencruster facies. Segment C4 witnesses the return to normal marine reefal faunas on the platform top and is characterized by patterns in redox sensitive proxies typical of normal marine dissolved oxygen levels. It remains unclear, if platform-top hypoxia resulted from the expansion and upwelling of basinal, oxygen-depleted water masses, or if spatially isolated, shallow hypoxic water bodies formed on the platform. Data shown here are relevant as they shed light on the driving mechanisms that control poorly understood faunal patterns during OAE1a in the neritic realm and provide evidence on the intricate relation between basinal and platform-top water masses.
    Print ISSN: 1814-9340
    Electronic ISSN: 1814-9359
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2019-05-20
    Description: Ostracods are common lacustrine calcitic microfossils. Their faunal assemblage and morphological characteristics are important ecological proxies, and their valves are archives of geochemical information related to palaeoclimatic and palaeohydrological changes. In an attempt to assess ostracod ecology (taxonomic diversity and valve morphology) combined with valve geochemistry (δ18O and δ13C) as palaeosalinity indicators, we analysed sedimentary material from the International Continental Scientific Drilling Program (ICDP) Ahlat Ridge site from a terminal and alkaline lake, Lake Van (Turkey), covering the last 150 kyr. Despite a low species diversity, the ostracod faunal assemblage reacted sensitively to changes in the concentration of total dissolved salts in their aquatic environment. Limnocythere inopinata is present throughout the studied interval, while Limnocythere sp. A is restricted to the Last Glacial period and related to increased lake water salinity and alkalinity. The presence of species belonging to the genus Candona is limited to periods of lower salinity. Valves of Limnocytherinae species (incl. L. inopinata) display nodes (hollow protrusions) during intervals of increased salinity. Both the number of noded valves and the number of nodes per valve appear to increase with rising salinity, suggesting that node formation is related to hydrological changes (salinity and/or alkalinity). In contrast to Lake Van's bulk δ18O record, the δ18O values of ostracod valves do record relative changes of the lake volume, with lower values during high lake level periods. The δ13C values of different species reflect ostracod habitat preferences (i.e. infaunal vs. epifaunal) but are less sensitive to hydrological changes. However, combined with other proxies, decreasing Holocene δ13C values may indicate a freshening of the lake water compared to the low lake level during the Last Glacial period. The Lake Van example underscores the significance and value of coupling ostracod ecology and valve geochemistry in palaeoenvironmental studies of endorheic lake basins.
    Print ISSN: 1726-4170
    Electronic ISSN: 1726-4189
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2019-01-02
    Description: Ostracods are common lacustrine calcitic microfossils. Their faunal assemblage and morphological characteristics are important ecological proxies, while their valves are archives of geochemical information related to palaeoclimatic and palaeohydrological changes. In an attempt to assess ostracod ecology (taxonomic diversity and valve morphology) combined with valve geochemistry (δ18O and δ13C) as palaeosalinity indicators, we analysed material from terminal and alkaline Lake Van (Turkey) covering the last 150 kyr. Despite a low species diversity, the ostracod faunal assemblage reacted sensitive to changes in the concentration of total dissolved salts in their aquatic environment. Limnocythere inopinata is present throughout the studied interval, while Limnocythere sp. A is restricted to the Last Glacial period and related to increased lake water salinity and alkalinity. The presence of species belonging to the genus Candona is limited to periods of lower salinity. Valves of limnocytherinae species (incl. L. inopinata) display nodes (hollow protrusions) during intervals of increased salinity. Both the amount of noded valves and the number of nodes per valve appear to increase with rising salinity, suggesting that node formation is related to hydrological changes (salinity and/or alkalinity). In contrast to Lake Van's inorganic δ18O record, the δ18O values of ostracod valves do record relative changes of the lake volume, with lower values during high lake level periods. The δ13C values of different species reflect ostracod habitat preferences (i.e., infaunal versus epifaunal) but are less sensitive to hydrological changes. However, combined with other proxies, decreasing Holocene δ13C values may indicate a freshening of the lake water compared to the low lake level during the Last Glacial period. The Lake Van example underscores the significance and value of coupling ostracod ecology and valve geochemistry in palaeoenvironmental studies of endorheic lakes basins.
    Print ISSN: 1810-6277
    Electronic ISSN: 1810-6285
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2019-07-18
    Description: Short-term hypoxia in epeiric water masses is a common phenomenon of modern marine environments and causes mass mortality in coastal marine ecosystems. Here, we test the hypothesis that during the early Aptian, platform-top hypoxia temporarily established in some of the vast epeiric seas of the central Tethys and caused, combined with other stressors, significant changes in reefal ecosystems. Potentially interesting target examples include time intervals characterized by the demise of lower Aptian rudist–coral communities and the establishment of microencruster facies, as previously described from the central and southern Tethys and from the proto-North Atlantic domain. These considerations are relevant as previous work has predominantly focused on early Aptian basinal anoxia in the context of Oceanic Anoxic Event (OAE) 1a, whereas the potential expansion of the oxygen minimum zone (OMZ) in coeval shallow-water environments is underexplored. Well-known patterns in the δ13C record during OAE 1a allow for a sufficiently time-resolved correlation with previously studied locations and assignment to chemostratigraphic segments. This paper presents and critically discusses the outcome of a multi-proxy study (e.g., rare earth elements (REEs), U isotopes, and redox-sensitive trace elements) applied to lower Aptian shallow-water carbonates today exposed in the Kanfanar quarry in Istria, Croatia. These rocks were deposited on an extensive, isolated high in the central Tethys surrounded by hemipelagic basins. Remarkably, during chemostratigraphic segment C2, the depletion of redox-sensitive trace elements As, V, Mo, and U in platform carbonates, deposited in normal marine oxic waters, record the first occurrence of basinal, organic-rich sediment deposition in which these elements are enriched. During the C3 segment, seawater oxygen depletion established on the platform top as indicated by the patterns in Ce/Ce* and U isotopes. Shifts in redox-sensitive proxies coincide with the expansion of microencruster facies. Segment C4 witnesses the return to normal marine reefal faunas on the platform top and is characterized by patterns in redox-sensitive proxies typical of normal marine dissolved oxygen levels. It remains unclear, however, if platform-top hypoxia resulted from the expansion and upwelling of basinal, oxygen-depleted water masses or if spatially isolated, shallow hypoxic water bodies formed on the platform. Data shown here are relevant as they shed light on the driving mechanisms that control poorly understood faunal patterns during OAE 1a in the neritic realm and provide evidence on the intricate relation between basinal and platform-top water masses.
    Print ISSN: 1814-9324
    Electronic ISSN: 1814-9332
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...