ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 11
    Publication Date: 2014-04-11
    Description: In the concluding paper of this tetralogy, we here use the different geomagnetic activity indices to reconstruct the near-Earth interplanetary magnetic field (IMF) and solar wind flow speed, as well as the open solar flux (OSF) from 1845 to the present day. The differences in how the various indices vary with near-Earth interplanetary parameters, which are here exploited to separate the effects of the IMF and solar wind speed, are shown to be statistically significant at the 93% level or above. Reconstructions are made using four combinations of different indices, compiled using different data and different algorithms, and the results are almost identical for all parameters. The correction to the aa index required is discussed by comparison with the Ap index from a more extensive network of mid-latitude stations. Data from the Helsinki magnetometer station is used to extend the aa index back to 1845 and the results confirmed by comparison with the nearby St Petersburg observatory. The optimum variations, using all available long-term geomagnetic indices, of the near-Earth IMF and solar wind speed, and of the open solar flux, are presented; all with ±2σ uncertainties computed using the Monte Carlo technique outlined in the earlier papers. The open solar flux variation derived is shown to be very similar indeed to that obtained using the method of Lockwood et al. (1999).
    Print ISSN: 0992-7689
    Electronic ISSN: 1432-0576
    Topics: Geosciences , Physics
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2007-07-30
    Description: Electricity in the atmosphere provides an ideal topic for educational outreach in environmental science. To support this objective, a simple instrument to measure real atmospheric electrical parameters has been developed and its performance evaluated. This project compliments educational activities undertaken by the Coupling of Atmospheric Layers (CAL) European research collaboration. The new instrument is inexpensive to construct and simple to operate, readily allowing it to be used in schools as well as at the undergraduate University level. It is suited to students at a variety of different educational levels, as the results can be analysed with different levels of sophistication. Students can make measurements of the fair weather electric field and current density, thereby gaining an understanding of the electrical nature of the atmosphere. This work was stimulated by the centenary of the 1906 paper in which C. T. R. Wilson described a new apparatus to measure the electric field and conduction current density. Measurements using instruments based on the same principles continued regularly in the UK until 1979. The instrument proposed is based on the same physical principles as C. T. R. Wilson's 1906 instrument.
    Print ISSN: 1680-7340
    Electronic ISSN: 1680-7359
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2013-11-18
    Description: We present a new composite of geomagnetic activity which is designed to be as homogeneous in its construction as possible. This is done by only combining data that, by virtue of the locations of the source observatories used, have similar responses to solar wind and IMF (interplanetary magnetic field) variations. This will enable us (in Part 2, Lockwood et al., 2013a) to use the new index to reconstruct the interplanetary magnetic field, B, back to 1846 with a full analysis of errors. Allowance is made for the effects of secular change in the geomagnetic field. The composite uses interdiurnal variation data from Helsinki for 1845–1890 (inclusive) and 1893–1896 and from Eskdalemuir from 1911 to the present. The gaps are filled using data from the Potsdam (1891–1892 and 1897–1907) and the nearby Seddin observatories (1908–1910) and intercalibration achieved using the Potsdam–Seddin sequence. The new index is termed IDV(1d) because it employs many of the principles of the IDV index derived by Svalgaard and Cliver (2010), inspired by the u index of Bartels (1932); however, we revert to using one-day (1d) means, as employed by Bartels, because the use of near-midnight values in IDV introduces contamination by the substorm current wedge auroral electrojet, giving noise and a dependence on solar wind speed that varies with latitude. The composite is compared with independent, early data from European-sector stations, Greenwich, St Petersburg, Parc St Maur, and Ekaterinburg, as well as the composite u index, compiled from 2–6 stations by Bartels, and the IDV index of Svalgaard and Cliver. Agreement is found to be extremely good in all cases, except two. Firstly, the Greenwich data are shown to have gradually degraded in quality until new instrumentation was installed in 1915. Secondly, we infer that the Bartels u index is increasingly unreliable before about 1886 and overestimates the solar cycle amplitude between 1872 and 1883 and this is amplified in the proxy data used before 1872. This is therefore also true of the IDV index which makes direct use of the u index values.
    Print ISSN: 0992-7689
    Electronic ISSN: 1432-0576
    Topics: Geosciences , Physics
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2007-07-30
    Description: The vertical columnar current density in the global atmospheric electrical circuit depends on the local columnar resistance. A simple model for the columnar resistance is suggested, which separates the local boundary layer component from the upper troposphere cosmic ray component, and calculates the boundary layer component from a surface measurement of air conductivity. This theory is shown to provide reasonable agreement with observations. One application of the simple columnar model theory is to provide a basis for the synthesis of surface atmospheric electrical measurements made simultaneously at several European sites. Assuming the ionospheric potential to be common above all the sites, the theoretical air-earth current density present in the absence of a boundary layer columnar resistance can be found by extrapolation. This is denoted the free troposphere limit air-earth current density, J0. Using early surface data from 1909 when no ionospheric potential data are available for corroboration, J0 is found to be ~6 pA m−2, although this is subject to uncertainties in the data and limitations in the theory. Later (1966–1971) European balloon and surface data give J0=2.4 pA m−2.
    Print ISSN: 1680-7340
    Electronic ISSN: 1680-7359
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2003-11-30
    Description: The Nagycenk Geophysical Observatory in Hungary (47° 38 ' N, 16° 43 ' E) has made continuous measurements of the vertical atmospheric electric Potential Gradient (PG) since 1962. Global signals have previously been identified in the Nagycenk PG data. A long-term (1920–1981) decrease has been discovered in the PG measured at the Eskdalemuir Observatory, Scotland (55° 19 ' N, 3° 12 ' W), suggesting that this represents a global change in the atmospheric electricity related to a decline in cosmic rays. A 40% decline in PG is shown here to have occurred at Nagycenk between 1962 and 2001, also consistent with changes in the air-Earth current measured at Kew (51° 28 ' N, 0° 19 ' W), London, 1966–1978. Comparison of the long-term PG measurements at both Eskdalemuir and Nagycenk gives further evidence to support the hypothesis of a global atmospheric electrical decline from the early twentieth century to the present time, as it is shown that local effects at Nagycenk are unlikely to have dominated the changes there.Key words. Meteorology and atmospheric dynamics (atmospheric electricity)
    Print ISSN: 0992-7689
    Electronic ISSN: 1432-0576
    Topics: Geosciences , Physics
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2005-09-15
    Description: Long-term decreases found recently in both the atmospheric electrical potential gradient (PG) and the air-Earth current density (Jz), using observation series from the UK and Hungary, have motivated studies of other European data. Two surface data series somewhat longer than a decade were available: PG data obtained at Serra do Pilar (Portugal), and PG, Jz and positive air conductivity measurements at Athens (Greece). Selecting data to minimise local effects, the 1960–1971 Serra do Pilar PG values decrease at dawn and in the evening. Dawn data obtained at Athens (1967–1977) indicate a reduction in Jz, while the simultaneous PG values there increase (coincident air conductivity values decrease) for the periods investigated. The Athens PG increase is attributed to local aerosol influences, typical of urban environments. Despite the urban influence, the Athens Jz shows similarities with soundings of the ionospheric potential. The decline in Jz at Athens occurs simultaneously with a decrease reported previously in Jz at Kew (UK), indicating that, at least, a regional decrease in the global atmospheric electrical circuit occurred during part of the twentieth century. Similar surface changes occur in European atmospheric electrical parameters, with a decrease of about 0.5% to 0.7% per year between 1920 and 1970 (possibly extending back to 1898), an annual decrease of between 2.7 and 3.4%, between 1959 and 1971 and a continued decrease of about ~1% per year between 1967 and 1984, possibly still continuing. Keywords. Meteorology and atmospheric dynamics (Atmospheric electricity) – Geomagnetism and paleomagnetism (Time variations, secular and long term) – Atmospheric composition and structure (Aerosols and particles)
    Print ISSN: 0992-7689
    Electronic ISSN: 1432-0576
    Topics: Geosciences , Physics
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...