ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Copernicus
  • Molecular Diversity Preservation International (MDPI)
  • Hindawi
  • 11
    Publication Date: 2017-09-30
    Description: Genes, Vol. 8, Pages 247: Et tu, Brute? Not Even Intracellular Mutualistic Symbionts Escape Horizontal Gene Transfer Genes doi: 10.3390/genes8100247 Authors: Sergio López-Madrigal Rosario Gil Many insect species maintain mutualistic relationships with endosymbiotic bacteria. In contrast to their free-living relatives, horizontal gene transfer (HGT) has traditionally been considered rare in long-term endosymbionts. Nevertheless, meta-omics exploration of certain symbiotic models has unveiled an increasing number of bacteria-bacteria and bacteria-host genetic transfers. The abundance and function of transferred loci suggest that HGT might play a major role in the evolution of the corresponding consortia, enhancing their adaptive value or buffering detrimental effects derived from the reductive evolution of endosymbionts’ genomes. Here, we comprehensively review the HGT cases recorded to date in insect-bacteria mutualistic consortia, and discuss their impact on the evolutionary success of these associations.
    Electronic ISSN: 2073-4425
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2017-10-04
    Description: Genes, Vol. 8, Pages 253: Exonization of an Intronic LINE-1 Element Causing Becker Muscular Dystrophy as a Novel Mutational Mechanism in Dystrophin Gene Genes doi: 10.3390/genes8100253 Authors: Ana Gonçalves Jorge Oliveira Teresa Coelho Ricardo Taipa Manuel Melo-Pires Mário Sousa Rosário Santos A broad mutational spectrum in the dystrophin (DMD) gene, from large deletions/duplications to point mutations, causes Duchenne/Becker muscular dystrophy (D/BMD). Comprehensive genotyping is particularly relevant considering the mutation-centered therapies for dystrophinopathies. We report the genetic characterization of a patient with disease onset at age 13 years, elevated creatine kinase levels and reduced dystrophin labeling, where multiplex-ligation probe amplification (MLPA) and genomic sequencing failed to detect pathogenic variants. Bioinformatic, transcriptomic (real time PCR, RT-PCR), and genomic approaches (Southern blot, long-range PCR, and single molecule real-time sequencing) were used to characterize the mutation. An aberrant transcript was identified, containing a 103-nucleotide insertion between exons 51 and 52, with no similarity with the DMD gene. This corresponded to the partial exonization of a long interspersed nuclear element (LINE-1), disrupting the open reading frame. Further characterization identified a complete LINE-1 (~6 kb with typical hallmarks) deeply inserted in intron 51. Haplotyping and segregation analysis demonstrated that the mutation had a de novo origin. Besides underscoring the importance of mRNA studies in genetically unsolved cases, this is the first report of a disease-causing fully intronic LINE-1 element in DMD, adding to the diversity of mutational events that give rise to D/BMD.
    Electronic ISSN: 2073-4425
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2018-04-06
    Description: Genes, Vol. 9, Pages 195: TRAP1 Regulation of Cancer Metabolism: Dual Role as Oncogene or Tumor Suppressor Genes doi: 10.3390/genes9040195 Authors: Danilo Swann Matassa Ilenia Agliarulo Rosario Avolio Matteo Landriscina Franca Esposito Metabolic reprogramming is an important issue in tumor biology. An unexpected inter- and intra-tumor metabolic heterogeneity has been strictly correlated to tumor outcome. Tumor Necrosis Factor Receptor-Associated Protein 1 (TRAP1) is a molecular chaperone involved in the regulation of energetic metabolism in cancer cells. This protein is highly expressed in several cancers, such as glioblastoma, colon, breast, prostate and lung cancers and is often associated with drug resistance. However, TRAP1 is also downregulated in specific tumors, such as ovarian, bladder and renal cancers, where its lower expression is correlated with the worst prognoses and chemoresistance. TRAP1 is the only mitochondrial member of the Heat Shock Protein 90 (HSP90) family that directly interacts with respiratory complexes, contributing to their stability and activity but it is still unclear if such interactions lead to reduced or increased respiratory capacity. The role of TRAP1 is to enhance or suppress oxidative phosphorylation; the effects of such regulation on tumor development and progression are controversial. These observations encourage the study of the mechanisms responsible for the dualist role of TRAP1 as an oncogene or oncosuppressor in specific tumor types. In this review, TRAP1 puzzling functions were recapitulated with a special focus on the correlation between metabolic reprogramming and tumor outcome. We wanted to investigate whether metabolism-targeting drugs can efficiently interfere with tumor progression and whether they might be combined with chemotherapeutics or molecular-targeted agents to counteract drug resistance and reduce therapeutic failure.
    Electronic ISSN: 2073-4425
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2013-01-22
    Description: Biomass is one of the most promising renewable energy sources. Abundantly, the potential as an alternative source to meet the world energy demand has been widely acknowledged. Gasification is one of the most efficient processes concerning thermochemical conversion, having as objective the production of a gas with useful energy power, known as producer gas. In order to optimize thermochemical processes such as the combustion of gases and subsequent gas mixture, computer modeling is becoming an important tool. Aiming to improve the performance of a combustion chamber, previously coupled to a downdraft gasifier, a thermofluidynamic model was elaborated and validated, using the concepts of computational fluid dynamics (CFD). It was reported that temperature, pressure, and velocity distributions of the computational model showed good consistency with experimental data, which allows using this model to predict the performance of this type of combustion chambers.
    Print ISSN: 2090-7451
    Electronic ISSN: 2090-746X
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2012-10-17
    Description: Biomass is one of the most promising renewable energy sources. Abundantly, the potential as an alternative source to meet the world energy demand has been widely acknowledged. Gasification is one of the most efficient processes concerning thermochemical conversion, having as objective the production of a gas with useful energy power, known as producer gas. In order to optimize thermochemical processes such as the combustion of gases and subsequent gas mixture, computer modeling is becoming an important tool. Aiming to improve the performance of a combustion chamber, previously coupled to a downdraft gasifier, a thermofluidynamic model was elaborated and validated, using the concepts of computational fluid dynamics (CFD). It was reported that temperature, pressure, and velocity distributions of the computational model showed good consistency with experimental data, which allows using this model to predict the performance of this type of combustion chambers.
    Print ISSN: 2090-7451
    Electronic ISSN: 2090-746X
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2013-08-30
    Description: Biomass is one of the most promising renewable energy sources. Abundantly, the potential as an alternative source to meet the world energy demand has been widely acknowledged. Gasification is one of the most efficient processes concerning thermochemical conversion, having as objective the production of a gas with useful energy power, known as producer gas. In order to optimize thermochemical processes such as the combustion of gases and subsequent gas mixture, computer modeling is becoming an important tool. Aiming to improve the performance of a combustion chamber, previously coupled to a downdraft gasifier, a thermofluidynamic model was elaborated and validated, using the concepts of computational fluid dynamics (CFD). It was reported that temperature, pressure, and velocity distributions of the computational model showed good consistency with experimental data, which allows using this model to predict the performance of this type of combustion chambers.
    Print ISSN: 2090-7451
    Electronic ISSN: 2090-746X
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2013-03-07
    Print ISSN: 1687-7667
    Electronic ISSN: 1687-7675
    Topics: Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2018-03-06
    Description: In a nonlinear system, impasse points are singularities beyond which solutions are not continuable. In this article, we study two families of nonlinear electrical circuits, which can be represented by nonlinear Implicit Differential Equations. We set conditions that ensure the existence of impasse points in both families of circuits. In the literature, there exist general results to analyse the presence of such singularities in given differential equations of this type. However, the method proposed in this work allows detecting their existence in these electrical topologies in an extremely straightforward way, as illustrated by the examples of application.
    Print ISSN: 1024-123X
    Electronic ISSN: 1563-5147
    Topics: Mathematics , Technology
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2018-03-06
    Description: This paper addresses the problem of vibrations produced by switched reluctance actuators, focusing on the linear configuration of this type of machines, aiming at its characterization regarding the structural vibrations. The complexity of the mechanical system and the number of parts used put serious restrictions on the effectiveness of analytical approaches. We build the 3D model of the actuator and use finite element method (FEM) to find its natural frequencies. The focus is on frequencies within the range up to nearly 1.2 kHz which is considered relevant, based on preliminary simulations and experiments. Spectral analysis results of audio signals from experimental modal excitation are also shown and discussed. The obtained data support the characterization of the linear actuator regarding the excited modes, its vibration frequencies, and mode shapes, with high potential of excitation due to the regular operation regimes of the machine. The results reveal abundant modes and harmonics and the symmetry characteristics of the actuator, showing that the vibration modes can be excited for different configurations of the actuator. The identification of the most critical modes is of great significance for the actuator’s control strategies. This analysis also provides significant information to adopt solutions to reduce the vibrations at the design.
    Print ISSN: 1687-5591
    Electronic ISSN: 1687-5605
    Topics: Computer Science , Technology
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2018-03-06
    Description: Amanita ponderosa are wild edible mushrooms that grow in some microclimates of Iberian Peninsula. Gastronomically this species is very relevant, due to not only the traditional consumption by the rural populations but also its commercial value in gourmet markets. Mineral characterisation of edible mushrooms is extremely important for certification and commercialization processes. In this study, we evaluate the inorganic composition of Amanita ponderosa fruiting bodies (Ca, K, Mg, Na, P, Ag, Al, Ba, Cd, Cr, Cu, Fe, Mn, Pb, and Zn) and their respective soil substrates from 24 different sampling sites of the southwest Iberian Peninsula (e.g., Alentejo, Andalusia, and Extremadura). Mineral composition revealed high content in macroelements, namely, potassium, phosphorus, and magnesium. Mushrooms showed presence of important trace elements and low contents of heavy metals within the limits of RDI. Bioconcentration was observed for some macro- and microelements, such as K, Cu, Zn, Mg, P, Ag, and Cd. A. ponderosa fruiting bodies showed different inorganic profiles according to their location and results pointed out that it is possible to generate an explanatory model of segmentation, performed with data based on the inorganic composition of mushrooms and soil mineral content, showing the possibility of relating these two types of data.
    Print ISSN: 1687-8760
    Electronic ISSN: 1687-8779
    Topics: Chemistry and Pharmacology
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...