ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 11
    Publikationsdatum: 2010-02-01
    Beschreibung: The cylindrical T-bar penetrometer was developed for profiling the undrained strength of soft soils in the centrifuge and is now a widely-used offshore site investigation tool. The conventional interpretation of the T-bar test is to convert the measured penetration resistance to soil strength using a single bearing factor associated with steady flow of soil around the bar. This paper describes a new analysis for the interpretation of T-bar penetrometer tests at shallow embedment and in soft soils, which is an increasingly significant consideration in the design of seabed infrastructure, including pipelines. The analysis captures two mechanisms that are usually neglected: (i) soil buoyancy and (ii) the reduced bearing factor arising from the shallow failure mechanism mobilized prior to the full flow of soil around the bar. The framework derives from theoretical considerations and is calibrated using large deformation finite element analyses. The depth at which the steady deep penetration condition is reached is shown to depend on the normalized soil strength, su/γ′D, and may be up to several diameters deep. The effect of this new procedure on the inferred soil strength compared with the conventional approach is illustrated through T-bar tests in three different centrifuge samples, spanning a range of strength ratios.
    Print ISSN: 0008-3674
    Digitale ISSN: 1208-6010
    Thema: Geologie und Paläontologie
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 12
    Publikationsdatum: 2008-05-01
    Print ISSN: 0008-3674
    Digitale ISSN: 1208-6010
    Thema: Geologie und Paläontologie
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 13
    Publikationsdatum: 2010-04-01
    Beschreibung: Centrifuge model tests were conducted to examine foundation failure mechanisms during rapid horizontal pushover of an electricity transmission line support tower, simulating a broken transmission line response or wind gust loading. A model transmission tower supported on four pad foundations in clay and backfilled with sand was loaded horizontally and the loads at each foundation were measured during fast and slow pushover. The tests examined the influence of tensile resistance mobilized at the underside of the footings, which is difficult to reliably incorporate within design practice due to a lack of accepted quantitative design methods. The measured performance of the tower footings was compared with results from a series of tests where a single footing is subjected to purely vertical loading in compression and tension and was found to be in good agreement. The tower response was back-analysed as a simple push–pull model and the calculated uplift capacity of the footing backfill provided a close match to the observed response of the tower footings subjected to slow pushover. During fast pushover, the additional capacity mobilized due to tensile resistance (suction) created by the reverse bearing capacity beneath the base of the footings subjected to uplift was quantified using a suction capacity factor.
    Print ISSN: 0008-3674
    Digitale ISSN: 1208-6010
    Thema: Geologie und Paläontologie
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 14
    Publikationsdatum: 2007-08-01
    Beschreibung: As the development of offshore hydrocarbons moves into deeper water, pipelines form an increasingly significant part of the required infrastructure. High-temperature high-pressure pipelines must be designed to accommodate thermal expansion and potential lateral buckling. A novel design approach is to control the formation of pre-engineered lateral buckles to relieve the expansion. The amplitude of these buckles is typically several pipe diameters. Assessment of the force–displacement interaction between the on-bottom pipeline and the seabed is crucial for design. A series of large-scale plane strain model tests has been conducted to measure the response of a pipe segment partially embedded in soft clay, during large amplitude cyclic movements, mimicking consecutive thermal expansion and contraction at a bend in a pipeline. Four key stages in the force–displacement response have been identified: (i) breakout, (ii) suction release, (iii) resistance against a steadily growing active berm, and (iv) additional resistance during collection of a pre-existing dormant berm. A simple upper bound solution is proposed to model the observed response. This solution captures the experimental trends including growth of the active berm and collection of dormant berms. This approach is the first attempt to quantitatively model the mechanisms underlying the response during large-displacement lateral sweeps of an on-bottom pipeline, accounting for the growth of soil berms.
    Print ISSN: 0008-3674
    Digitale ISSN: 1208-6010
    Thema: Geologie und Paläontologie
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 15
    Publikationsdatum: 2008-05-01
    Beschreibung: Pipelines laid on the seabed expand and contract during operating cycles as a result of thermal loading, which can lead to lateral buckling. Analysis of this behaviour requires assessment of the vertical penetration and lateral breakout responses. This paper reports centrifuge modelling of these processes, using advanced image analysis techniques to observe the soil deformation. Simple mechanisms are fitted to the observed deformation patterns, allowing the mobilized soil strength to be back-calculated. The vertical embedment mechanisms closely match plasticity solutions. Even if heave is accounted for, the penetration resistance is slightly higher than calculations based on the undrained strength inferred from a T-bar penetrometer. This discrepancy can be attributed to the additional remoulding and softening during steady flow around a T-bar compared to shallow pipe penetration. The lateral breakout response is brittle, and the peak resistance is governed by the available tensile resistance behind the pipe. During steady lateral sweeping the pipe rises close to the original soil surface. At this stage the resistance is governed by the growth of a soil berm ahead of the pipe. Accurate assessment of the near-surface soil strength is difficult, hampering the use of theoretical solutions.
    Print ISSN: 0008-3674
    Digitale ISSN: 1208-6010
    Thema: Geologie und Paläontologie
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...