ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • American Meteorological Society
Collection
  • 11
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2017. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 47 (2017): 1061-1075, doi:10.1175/JPO-D-16-0248.1.
    Description: A major challenge in modeling the circulation over coral reefs is uncertainty in the drag coefficient because existing estimates span two orders of magnitude. Current and pressure measurements from five coral reefs are used to estimate drag coefficients based on depth-average flow, assuming a balance between the cross-reef pressure gradient and the bottom stress. At two sites wind stress is a significant term in the cross-reef momentum balance and is included in estimating the drag coefficient. For the five coral reef sites and a previous laboratory study, estimated drag coefficients increase as the water depth decreases consistent with open channel flow theory. For example, for a typical coral reef hydrodynamic roughness of 5 cm, observational estimates, and the theory indicate that the drag coefficient decreases from 0.4 in 20 cm of water to 0.005 in 10 m of water. Synthesis of results from the new field observations with estimates from previous field and laboratory studies indicate that coral reef drag coefficients range from 0.2 to 0.005 and hydrodynamic roughnesses generally range from 2 to 8 cm. While coral reef drag coefficients depend on factors such as physical roughness and surface waves, a substantial fraction of the scatter in estimates of coral reef drag coefficients is due to variations in water depth.
    Description: The Red Sea field program was supported by Awards USA 00002 and KSA 00011 made by KAUST to S. Lentz and J. Churchill. The Palau field program was funded by NSF Award OCE-1220529.
    Keywords: Ocean ; Currents ; Wind stress ; Boundary layer ; Sea level ; Tides
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2023-02-23
    Description: Author Posting. © American Meteorological Society, 2019. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Climate 32(5) (2019): 1551-1571. doi:10.1175/JCLI-D-18-0444.1.
    Description: Previous studies have documented a poleward shift in the subsiding branches of Earth’s Hadley circulation since 1979 but have disagreed on the causes of these observed changes and the ability of global climate models to capture them. This synthesis paper reexamines a number of contradictory claims in the past literature and finds that the tropical expansion indicated by modern reanalyses is within the bounds of models’ historical simulations for the period 1979–2005. Earlier conclusions that models were underestimating the observed trends relied on defining the Hadley circulation using the mass streamfunction from older reanalyses. The recent observed tropical expansion has similar magnitudes in the annual mean in the Northern Hemisphere (NH) and Southern Hemisphere (SH), but models suggest that the factors driving the expansion differ between the hemispheres. In the SH, increasing greenhouse gases (GHGs) and stratospheric ozone depletion contributed to tropical expansion over the late twentieth century, and if GHGs continue increasing, the SH tropical edge is projected to shift further poleward over the twenty-first century, even as stratospheric ozone concentrations recover. In the NH, the contribution of GHGs to tropical expansion is much smaller and will remain difficult to detect in a background of large natural variability, even by the end of the twenty-first century. To explain similar recent tropical expansion rates in the two hemispheres, natural variability must be taken into account. Recent coupled atmosphere–ocean variability, including the Pacific decadal oscillation, has contributed to tropical expansion. However, in models forced with observed sea surface temperatures, tropical expansion rates still vary widely because of internal atmospheric variability.
    Description: We thank Ori Adam, Nick Davis, Isaac Held, Tim Merlis, Lorenzo Polvani, and one anonymous reviewer for helpful comments and suggestions. We thank U.S. CLIVAR and the International Space Science Institute (ISSI) for funding working groups that stimulated this project. We thank all members of the working groups for helpful discussions, and the U.S. CLIVAR and ISSI offices and their sponsoring agencies (NASA,NOAA,NSF,DOE, ESA, Swiss Confederation, Swiss Academy of Sciences, and University of Bern) for supporting these groups and activities.We acknowledge WCRP’sWorking Group on CoupledModelling, which is responsible for CMIP, and we thank the climate modeling groups (Table 2) for producing and making available their model output. For CMIP, the U.S. DOE PCMDI provides coordinating support and led development of software infrastructure in partnership with the Global Organization for Earth System Science Portals.
    Description: 2019-08-06
    Keywords: Hadley circulation ; Climate models ; Reanalysis data ; Multidecadal variability ; Pacific decadal oscillation ; Trends
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2020. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of the Atmospheric and Oceanic Technology 37(5), (2020): 807-824, doi:10.1175/JTECH-D-19-0054.1.
    Description: Marine mammals are under growing pressure as anthropogenic use of the ocean increases. Ship strikes of large whales and loud underwater sound sources including air guns for marine geophysical prospecting and naval midfrequency sonar are criticized for their possible negative effects on marine mammals. Competent authorities regularly require the implementation of mitigation measures, including vessel speed reductions or shutdown of acoustic sources if marine mammals are sighted in sensitive areas or in predefined exclusion zones around a vessel. To ensure successful mitigation, reliable at-sea detection of animals is crucial. To date, ship-based marine mammal observers are the most commonly implemented detection method; however, thermal (IR) imaging–based automatic detection systems have been used in recent years. This study evaluates thermal imaging–based automatic whale detection technology for its use across different oceans. The performance of this technology is characterized with respect to environmental conditions, and an automatic detection algorithm for whale blows is presented. The technology can detect whales in polar, temperate, and subtropical ocean regimes over distances of up to several kilometers and outperforms marine mammal observers in the number of whales detected. These results show that thermal imaging technology can be used to assist in providing protection for marine mammals against ship strike and acoustic impact across the world’s oceans.
    Description: This work was funded by the Office of Naval Research (ONR) under Award N000141310856, by the Environmental Studies Research Fund (ESRF; esrfunds.org) under Award 2014-03S and by the Alfred-Wegener-Institute Helmholtz Zentrum für Polar- und Meeresforschung. DPZ and OB declare competing financial interests: 1) Patent US8941728B2, DE102011114084B4: A method for automatic real-time marine mammal detection. The patent describes the ideas basic to the automatic whale detection software as used to acquire and process the data presented in this paper. 2) Licensing of the Tashtego automatic whale detection software to the manufacturer of IR sensor. The authors confirm that these competing financial interests did not alter their adherence good scientific practice. We thank P. Abgrall, J. Coffey, K. Keats, B. Mactavish, V. Moulton, and S. Penney-Belbin for data collection or IR image review. We thank S. Besaw, J. Christian, A. Coombs, P. Coombs, W. Costello, T. Elliott, E. Evans, I. Goudie, C. Jones, K. Knowles, R. Martin, A. Murphy, D. and J. Shepherd; and the staffs at the Irish Loop Express, the Myrick Wireless Interpretive Centre, the Mistaken Point Ecological Reserve, and the lighthouse keepers for logistical assistance at our remote field site. We thank D. Boutilier and B. McDonald (DFO) for assisting us in obtaining license to occupy permits for Cape Race. We thank D. Taylor (ESRF Research Manager) for his support.
    Keywords: Ocean ; Instrumentation/sensors ; Remote sensing ; Animal studies ; Field experiments
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2001-11-01
    Description: No Abstract available.
    Print ISSN: 0065-9401
    Electronic ISSN: 1943-3646
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2019-01-01
    Description: The history of over 100 years of observing the ocean is reviewed. The evolution of particular classes of ocean measurements (e.g., shipboard hydrography, moorings, and drifting floats) are summarized along with some of the discoveries and dynamical understanding they made possible. By the 1970s, isolated and “expedition” observational approaches were evolving into experimental campaigns that covered large ocean areas and addressed multiscale phenomena using diverse instrumental suites and associated modeling and analysis teams. The Mid-Ocean Dynamics Experiment (MODE) addressed mesoscale “eddies” and their interaction with larger-scale currents using new ocean modeling and experiment design techniques and a suite of developing observational methods. Following MODE, new instrument networks were established to study processes that dominated ocean behavior in different regions. The Tropical Ocean Global Atmosphere program gathered multiyear time series in the tropical Pacific to understand, and eventually predict, evolution of coupled ocean–atmosphere phenomena like El Niño–Southern Oscillation (ENSO). The World Ocean Circulation Experiment (WOCE) sought to quantify ocean transport throughout the global ocean using temperature, salinity, and other tracer measurements along with fewer direct velocity measurements with floats and moorings. Western and eastern boundary currents attracted comprehensive measurements, and various coastal regions, each with its unique scientific and societally important phenomena, became home to regional observing systems. Today, the trend toward networked observing arrays of many instrument types continues to be a productive way to understand and predict large-scale ocean phenomena.
    Print ISSN: 0065-9401
    Electronic ISSN: 1943-3646
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 1980-05-01
    Description: No Abstract available.
    Print ISSN: 0065-9401
    Electronic ISSN: 1943-3646
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2017-05-01
    Description: Neutral-buoyancy vehicles demand high-density energy sources and lithium is light with high oxidation energy. PolyPlus Battery Company has developed a prototype lithium-seawater battery that is attractive for powering long-duration autonomous oceanographic vehicles (floats and underwater gliders). These batteries were tested in the laboratory and at sea. PolyPlus batteries use “Protected Lithium Electrodes” with proprietary “windows” protecting the volatile lithium anode from water while passing lithium ions. The cathode reduces oxygen dissolved in seawater, or hydrolyzes seawater to produce hydrogen. Not requiring additional electrolyte, fuel, or pressure cases, these cells have impressive weight advantages. Good electrode–seawater mass transfer is required but can increase drag and be impeded by biofouling. Tests assessing robustness of the PolyPlus batteries in oceanographic use, evaluating mass transfer issues, and observing biofouling impacts are reported. In sea trials, two cells were tested for 69 days mounted on a Spray glider. Findings are as follows: 1) the cells were robust over 900 dives, most to 400 m; 2) without antifouling measures, the cells became substantially biofouled, but their performance was undiminished; and 3) performance was complex, depending on current density, oxygen concentration, and flow conditions. For dissolved oxygen concentration above 1 mL L−1, the cells delivered 9 W m−2 of electrode surface at 3 V. For low oxygen, the cell shifted to hydrolysis near 2.3 V, but mass transfer was less critical so current density could be increased and observed power reached 5 W m−2. This could be increased using a lower resistance load.
    Print ISSN: 0739-0572
    Electronic ISSN: 1520-0426
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2017-02-01
    Description: Standard meteorological model performance evaluation (sMPE) can be insufficient in determining “fitness” for air quality modeling. An sMPE compares predictions of meteorological variables with community-based thresholds. Conceptually, these thresholds measure the model’s capability to represent mesoscale features that cause variability in air pollution. A method that instead examines features could provide a better estimate of fitness. This work compares measures of fitness from sMPE analysis with a feature-based MPE (fMPE). Meteorological simulations for Bogotá, Colombia, using the Weather Research and Forecasting (WRF) Model provide an ideal case study that highlights the importance of fMPE. Bogotá is particularly interesting because the complex topography presents challenges for WRF in sMPE. A cluster analysis identified four dominant meteorological features associated with air quality driven by wind patterns. The model predictions are able to pass several sMPE thresholds but show poor performance for wind direction. The base simulation can be improved with alternative surface characterization datasets for terrain, soil classification, and land use. Despite doubling the number of days with acceptable specific humidity, overall acceptability was never more than 10%. By comparison, an fMPE showed that predictions were able to reproduce the air-quality-relevant features on 38.4% of the days. The fMPE is based on features derived from an observational cluster analysis that have clear relationships with air quality, which suggests that reproducing those features will indicate better air quality model performance. An fMPE may be particularly useful for high-resolution modeling (1 km or less) when finescale variability can cause poor sMPE performance even when the general pattern that drives air pollution is well reproduced.
    Print ISSN: 1558-8424
    Electronic ISSN: 1558-8432
    Topics: Geography , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2017-02-01
    Description: The arid subtropics are situated at the edges of the tropical belt, where subsidence in the Hadley cells suppresses precipitation. Any meridional shift in these edge latitudes could have significant impacts on surface climate. Recent studies have investigated past and future changes in the tropical belt width and have found discrepancies in the rates of expansion estimated with different metrics and between climate models and reanalyses. Here, CMIP5 simulations and four modern reanalyses are analyzed using an ensemble of objective tropical belt width metrics to reexamine if such inconsistencies exist. The authors do not find sufficient evidence to demonstrate this discrepancy between models and reanalyses, as reanalysis trends in the tropical belt width fall within the range of model trends for any given metric. Furthermore, only metrics based on the Hadley cells are found to exhibit robust historical and future expansion. Metrics based on the subtropical jet and the tropopause show no robust response. This differentiation may be due to the strong correlation, on all time scales, between the Hadley cell edge latitudes and the latitudes of the eddy-driven jets, which consistently shift poleward in response to radiative forcings. In contrast, the subtropical jet and tropopause metrics appear to be decoupled from the Hadley cells and the eddy-driven jets and essentially measure a different tropical belt. The tropical belt width metrics are inconsistently correlated with surface climate indices based on precipitation and surface evaporation. This may make assessing the surface impacts of observed and future tropical expansion challenging.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2018-06-07
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...