ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • Wiley-Blackwell  (45)
  • 1970-1974  (38)
  • 1955-1959  (7)
  • 11
    Digitale Medien
    Digitale Medien
    New York : Wiley-Blackwell
    Journal of Polymer Science Part A-2: Polymer Physics 10 (1972), S. 877-886 
    ISSN: 0449-2978
    Schlagwort(e): Physics ; Polymer and Materials Science
    Quelle: Wiley InterScience Backfile Collection 1832-2000
    Thema: Chemie und Pharmazie , Physik
    Notizen: Several important aspects of the flow in polymer melts through capillaries remain unexplored. This paper examines experimentally one such effect associated with the radial shear-stress gradient in capillaries. During capillary melt flow of a polymer with a wide molecular weight distribution, migration of the large molecules away from the region of highest shear stress, i.e., at the capillary wall, has been predicted but only modestly investigated. This effect has the potential to produce a molecular weight spectrum over the cross section of extruded polymer. Studies of distribution in shear were conducted on a well-characterized wide-distribution polystyrene (M̄w = 234,000). An Instron Rheometer equipped with a long capillary (length/diameter ratio of 66.7) was used to perform the extrusion at temperatures of 160-250°C. A solvent coring procedure was used to dissolve away concentric layers of polymer from the extrudate for molecular weight analyses. The method has been shown to cut clean sections without selective extraction. Values of M̄w, M̄n and M̄w/M̄n were calculated from complete molecular weight distribution data obtained by calibrated gel permeation chromatography. For a wide range of shear rates and temperatures, no evidence for molecular fractionation was observed. Shear degradation of this polymer was found to be small. However, at high shear rates at 250°C, evidence indicating extensive shear-induced thermal degradation was found. No evidence for oxidative degradation at the extrudate surface was found at either low or high shear rates at this temperature.
    Zusätzliches Material: 2 Ill.
    Materialart: Digitale Medien
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 12
    Digitale Medien
    Digitale Medien
    New York : Wiley-Blackwell
    Journal of Polymer Science Part A-2: Polymer Physics 9 (1971), S. 2255-2258 
    ISSN: 0449-2978
    Schlagwort(e): Physics ; Polymer and Materials Science
    Quelle: Wiley InterScience Backfile Collection 1832-2000
    Thema: Chemie und Pharmazie , Physik
    Zusätzliches Material: 2 Ill.
    Materialart: Digitale Medien
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 13
    Digitale Medien
    Digitale Medien
    New York : Wiley-Blackwell
    Journal of Polymer Science Part A-2: Polymer Physics 9 (1971), S. 463-482 
    ISSN: 0449-2978
    Schlagwort(e): Physics ; Polymer and Materials Science
    Quelle: Wiley InterScience Backfile Collection 1832-2000
    Thema: Chemie und Pharmazie , Physik
    Notizen: Several corrections possibly required for capillary flow are based on the existence of a linear relationship between the pressure drop along the capillary and the length-to-diameter ratio at a given temperature and shear rate. Recently, the appearance of nonlinearities in this relationship has created some concern as to the cause of this behavior. The occurrence and an explanation of the nonlinearities for polystyrene form the basis of this study. A narrow-distribution, low molecular weight (20,400) polystyrene was tested in eight capillaries at temperatures of 140 and 160°C to initiate the discussion of the nonlinearity in a ΔP (pressure) versus L/D (length/diameter of capillary) plot. The sample exhibits negligible extrudate swelling at all pressures which reinforces the idea that pressure is influencing the flow. The pressure dependence of viscosity is determined using the equivalent expression of the WLF equation derived from free volume theory. Justification for its use is presented. A pressure correction, representing the increased shear stress necessary for flow of the higher viscosity material, is found to linearize the ΔP versus L/D data. A narrow-distribution, high molecular weight polystyrene (670,000) is subjected to a similar analysis at 165°C by using nine capillaries. The situation is quite different, as the high molecular weight sample is not nearly as ideal as the low molecular weight polystyrene.
    Zusätzliches Material: 14 Ill.
    Materialart: Digitale Medien
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 14
    Digitale Medien
    Digitale Medien
    New York : Wiley-Blackwell
    Journal of Polymer Science Part A-2: Polymer Physics 10 (1972), S. 1135-1143 
    ISSN: 0449-2978
    Schlagwort(e): Physics ; Polymer and Materials Science
    Quelle: Wiley InterScience Backfile Collection 1832-2000
    Thema: Chemie und Pharmazie , Physik
    Notizen: The Melting of various polyethylene structures is compared by using data obtained on the Perkin-Elmer differential scanning calorimeter (DSC). Transparent, high-density samples crystallized under both orientation and pressure in the Instron capillary rheometer are compared with samples crystallized from dilute solution by stirring and with samples crystallized under high pressure. The latter two structures are assumed to contain extended-chain crystallites. By comparison, the melting points and the superheatability of the Instron samples are consistent with the presence of an extended-chain crystal component. The melting of irradiated samples crystallized in the rheometer is also observed to be consistent with this conclusion. In addition, DSC data are compared with the melting points defined with a polarized light microscope equipped with a hot stage.
    Zusätzliches Material: 5 Ill.
    Materialart: Digitale Medien
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 15
    Digitale Medien
    Digitale Medien
    New York : Wiley-Blackwell
    Journal of Polymer Science Part A-2: Polymer Physics 10 (1972), S. 1639-1655 
    ISSN: 0449-2978
    Schlagwort(e): Physics ; Polymer and Materials Science
    Quelle: Wiley InterScience Backfile Collection 1832-2000
    Thema: Chemie und Pharmazie , Physik
    Notizen: The viscoelastic (VE) response of freeze-dried blends of polystyrene (PS) and poly-(2,6-dimethyl phenylene oxide) (PPO) has been studied as a function of composition, frequency, and temperature to examine the degree of rheological compatibility. When blended together, the relaxation processes of both molecular species exhibit the same temperature dependence. However, the temperature dependence of the VE response is a function of composition. It is shown that this behavior can be predicted from the measured glass transition temperatures by assuming the additivity of the free volumes of the components. The properties of the blends are compared at equal free volumes. The effective segmental friction factor is found to be independent of composition while the modulus of the rubbery plateau increases with PPO concentration. This result is interpreted as a change in the entanglement molecular weight Me of the blends. When the changes in Me are considered, the relationship between the zero-shear viscosity η0 and the 3.4 power of the weight-average molecular weight, commonly found for high molecular weight homopolymers, predicts the compositional dependence of η0 for the PPO-PS blends. It is concluded that the PPO-PS system forms a rheologically compatible blend.
    Zusätzliches Material: 10 Ill.
    Materialart: Digitale Medien
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 16
    Digitale Medien
    Digitale Medien
    New York : Wiley-Blackwell
    Journal of Polymer Science Part A-2: Polymer Physics 9 (1971), S. 731-745 
    ISSN: 0449-2978
    Schlagwort(e): Physics ; Polymer and Materials Science
    Quelle: Wiley InterScience Backfile Collection 1832-2000
    Thema: Chemie und Pharmazie , Physik
    Notizen: General expressions for determining the pressure coefficient and axial distribution of the viscosity and pressure in capillary flow are derived for Newtonian and shear-thinning fluids. The pressure-dependent viscosity model is obtained from the WLF equation as derived from Doolittle's free volume theory. The model has also been derived from Eyring's hole theory for viscosity. Poiseuille's equation is modified to correct for the pressure effect on viscosity. A Newtonian, low-molecular-weight polystyrene and a shear-thinning, high-molecular-weight polystyrene were tested in an Instron capillary rheometer. The axial velocity distribution was found to be negligibly affected by pressure whereas the viscosity was shown to increase markedly with a decrease in volume. The resulting pressure effects on the viscosity of both samples were analyzed by using the derived expressions.
    Zusätzliches Material: 8 Ill.
    Materialart: Digitale Medien
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 17
    Digitale Medien
    Digitale Medien
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Applied Polymer Science 14 (1970), S. 2697-2706 
    ISSN: 0021-8995
    Schlagwort(e): Chemistry ; Polymer and Materials Science
    Quelle: Wiley InterScience Backfile Collection 1832-2000
    Thema: Chemie und Pharmazie , Maschinenbau , Physik
    Notizen: A survey of viscoelastic data on amorphous polymer melts indicates that the steady-state shear compliance, Je, of many systems can be approximated from a knowledge of their flow response. For systems with monomodel molecular weight distributions, the absolute value of the reduced complex viscosity, η*/η0, is found to equal 0.67 ± 0.03 at the frequency ω, where ωη0Je = 1. This result applies to a variety of polymer systems and to a wide range of molecular weights and distributions as long as the highest molecular weight dispersion of the distribution constitutes more than 20 weight per cent of the sample. This relationship determines Je from non-Newtonian flow data and thus provides a consistent way to relate differently shaped reduced variable curves and to calculate compliances from characteristic times reported in the literature. The connection between some commonly used times and Je is given. The method of calculating Je is successfully applied to capillary measurements of melt viscosities and to characteristic times determined from steady-state shear measurements of concentrated polymer solutions.
    Zusätzliches Material: 6 Ill.
    Materialart: Digitale Medien
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 18
    Digitale Medien
    Digitale Medien
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Applied Polymer Science 15 (1971), S. 1037-1037 
    ISSN: 0021-8995
    Schlagwort(e): Chemistry ; Polymer and Materials Science
    Quelle: Wiley InterScience Backfile Collection 1832-2000
    Thema: Chemie und Pharmazie , Maschinenbau , Physik
    Materialart: Digitale Medien
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 19
    Digitale Medien
    Digitale Medien
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Applied Polymer Science 17 (1973), S. 605-618 
    ISSN: 0021-8995
    Schlagwort(e): Chemistry ; Polymer and Materials Science
    Quelle: Wiley InterScience Backfile Collection 1832-2000
    Thema: Chemie und Pharmazie , Maschinenbau , Physik
    Notizen: A theoretical model for drying of a thin gel film is presented. The model is based upon the premise that as solvent is removed from any portion of a gel structure which is permeable by the solvent, the structure shrinks locally to fill the voids left by the solvent. The diffusion coefficient of solvent through the gel film is assumed to be an exponential function of concentration and temperature. The governing equations for the model indicate that for nonisothermal drying, the results of drying and shrinkage rates are functions of 13 independent dimensionless system variables. These results are obtained with the help of a computer solution of the proposed model. The computer results indicate that, except under extreme temperature conditions, the drying and shrinkage rates are most influenced by dimensionless groups M, P, and P̄, defined by eq. (9) of the paper. Furthermore, the drying and shrinkage rates are essentially independent of groups M and P for the values of M and P greater than approximately 100 and 10, respectively. The effect of variable solvent diffusivity on approximate time to achieve the steady-state drying and shrinkage rates is approximately handled by defining a dimensionless time variable τ in terms of average solvent diffusivity. Finally, some experimental data on drying and shrinkage rates of isothermal drying of lyphogel film under natural convection condition are obtained. These data are found to be in qualitative agreement with similar computer predictions by the proposed model.
    Zusätzliches Material: 8 Ill.
    Materialart: Digitale Medien
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 20
    Digitale Medien
    Digitale Medien
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Applied Polymer Science 14 (1970), S. 879-896 
    ISSN: 0021-8995
    Schlagwort(e): Chemistry ; Polymer and Materials Science
    Quelle: Wiley InterScience Backfile Collection 1832-2000
    Thema: Chemie und Pharmazie , Maschinenbau , Physik
    Notizen: An investigation was made of the magnitude and mechanism of shear degradation of a narrow distribution, high molecular weight (Mw = 670,000) polystyrene. An Instron rheometer was used to perform the extrusion at temperatures from 164° to 250°C. The change in molecular weight distribution was studied by gel permeation chromatography. The maximum shear stress employed was 5.83 kg/cm2. It was found that degradation could be induced at high stress at temperatures of 50°C lower than degradation of polystyrene would occur exclusively due to thermal forces. An activation energy for the degradation, calculated at constant shear rate, was +20.2 kcal/mole. The direction and magnitude of this value are consistent with degradation induced through a mechanical reduced activation for thermal degradation.
    Zusätzliches Material: 15 Ill.
    Materialart: Digitale Medien
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...