ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 11
    ISSN: 1365-3040
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: A model is presented which solves simultaneously for leaf-scale stomatal conductance, CO2 assimilation and the energy balance as a function of leaf position within canopies of well-watered vegetation. Fluxes and conductances were calculated separately for sunlit and shaded leaves. A linear dependence of photosynthetic capacity on leaf nitrogen content was assumed, while leaf nitrogen content and light intensity were assumed to decrease exponentially within canopies. Separate extinction coefficients were used for diffuse and direct beam radiation. An efficient Gaussian integration technique was used to compute fluxes and mean conductances for the canopy. The multilayer model synthesizes current knowledge of radiation penetration, leaf physiology and the physics of evaporation and provides insights into the response of whole canopies to multiple, interacting factors. The model was also used to explore sources of variation in the slopes of two simple parametric models (nitrogen- and light-use efficiency), and to set bounds on the magnitudes of the parameters.For canopies low in total N, daily assimilation rates are ∼10% lower when leaf N is distributed uniformly than when the same total N is distributed according to the exponentially decreasing profile of absorbed radiation. However, gains are negligible for plants with high N concentrations. Canopy conductance, Gc should be calculated as Gc=Aσ(fslgsl+fshgsh), where Δ is leaf area index, fsi and fsh are the fractions of sunlit and shaded leaves at each level, and gsi and gsh are the corresponding stomatal conductances. Simple addition of conductances without this weighting causes errors in transpiration calculated using the ‘big-leaf’ version of the Penman-Monteith equation. Partitioning of available energy between sensible and latent heat is very responsive to the parameter describing the sensitivity of stomata to the atmospheric humidity deficit. This parameter also affects canopy conductance, but has a relatively small impact on canopy assimilation.Simple parametric models are useful for extrapolating understanding from small to large scales, but the complexity of real ecosystems is thus subsumed in unexplained variations in parameter values. Simulations with the multilayer model show that both nitrogen- and radiation-use efficiencies depend on plant nutritional status and the diffuse component of incident radiation, causing a 2- to 3-fold variation in these efficiencies.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    ISSN: 1365-3040
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: The cost of nitrogen storage to current growth was examined in relation to N availability in the biennial Cirsium vulgare. Plants were grown outdoors, in sand culture, with continuous diel drip irrigation of fertilization medium containing one of five different N concentrations. Plants grown at the highest N concentration stored twice as much N in their tap roots as did plants grown at the lowest N concentration. In high-N-grown plants, the storage of N reserves occurred during the period of maximum growth, at the same time as tap-root production. At the time of maximum biomass, stored N was also at a maximum. During the period following maximum biomass, no additional storage of N occurred. This pattern was observed despite frequent late-season leaf senescence which resulted in a large pool of potentially mobile N which could have been stored at no cost to growth. In low-N-grown plants, the production of tap-root storage tissue and the filling of that tissue with stored N were staggered. Tap-root production and growth occurred during the period of maximum growth, as in the high-N-grown plants. However, filling of the storage tissue with N occurred late in the growing season, when the pool of mobile N from senescent leaves was large. The utilization of this late-season N source occurred with little or no cost to growth, and this N is labelled, according to previous definitions, as ‘accumulated’. The costs of storing N in plants of the different N treatments were calculated using two models based on different growth constraints. In one model, the cost of N storage was represented as lost growth due to allocation of N to storage, rather than to the photosynthetic shoot (i.e. growth was assumed to be limited by carbon acquisition). In the second model, the storage cost was calculated as lost growth due to allocation of N to storage, rather than to the nitrogen-acquiring fine-root system (i.e. growth was assumed to be limited by nitrogen acquisition). In both models, the total cost of N storage was predicted to decrease as N availability decreased due to smaller storage pool sizes in plants of the low-N treatments. The cost of filling the tap root with stored N as a percentage of the total storage cost was also reduced as N availability decreased due to the occurrence of late-season accumulation. By relying, at least in part, on late-season accumulation, plants grown at the lowest three levels of N availability reduced total storage costs by 15 to 22%. The results demonstrate that plants are capable of adjusting their storage patterns in response to low nitrogen availability such that the costs of storage are reduced.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    ISSN: 1365-2486
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Notes: Based on review and original data, this synthesis investigates carbon pools and fluxes of Siberian and European forests (600 and 300 million ha, respectively). We examine the productivity of ecosystems, expressed as positive rate when the amount of carbon in the ecosystem increases, while (following micrometeorological convention) downward fluxes from the atmosphere to the vegetation (NEE = Net Ecosystem Exchange) are expressed as negative numbers. Productivity parameters are Net Primary Productivity (NPP=whole plant growth), Net Ecosystem Productivity (NEP = CO2 assimilation minus ecosystem respiration), and Net Biome Productivity (NBP = NEP minus carbon losses through disturbances bypassing respiration, e.g. by fire and logging). Based on chronosequence studies and national forestry statistics we estimate a low average NPP for boreal forests in Siberia: 123 gC m–2 y–1. This contrasts with a similar calculation for Europe which suggests a much higher average NPP of 460 gC m–2 y–1 for the forests there. Despite a smaller area, European forests have a higher total NPP than Siberia (1.2–1.6 vs. 0.6–0.9 × 1015 gC region–1 y–1). This arises as a consequence of differences in growing season length, climate and nutrition. For a chronosequence of Pinus sylvestris stands studied in central Siberia during summer, NEE was most negative in a 67-y old stand regenerating after fire (– 192 mmol m–2 d–1) which is close to NEE in a cultivated forest of Germany (– 210 mmol m–2 d–1). Considerable net ecosystem CO2-uptake was also measured in Siberia in 200- and 215-y old stands (NEE:174 and – 63 mmol m–2 d–1) while NEP of 7- and 13-y old logging areas were close to the ecosystem compensation point. Two Siberian bogs and a bog in European Russia were also significant carbon sinks (– 102 to – 104 mmol m–2 d–1). Integrated over a growing season (June to September) we measured a total growing season NEE of – 14 mol m–2 summer–1 (– 168 gC m–2 summer–1) in a 200-y Siberian pine stand and – 5 mol m–2 summer–1 (– 60 gC m–2 summer–1) in Siberian and European Russian bogs. By contrast, over the same period, a spruce forest in European Russia was a carbon source to the atmosphere of (NEE: + 7 mol m–2 summer–1 = + 84 gC m–2 summer–1). Two years after a windthrow in European Russia, with all trees being uplifted and few successional species, lost 16 mol C m–2 to the atmosphere over a 3-month in summer, compared to the cumulative NEE over a growing season in a German forest of – 15.5 mol m–2 summer–1 (– 186 gC m–2 summer–1; European flux network annual averaged – 205 gC m–2 y–1). Differences in CO2-exchange rates coincided with differences in the Bowen ratio, with logging areas partitioning most incoming radiation into sensible heat whereas bogs partitioned most into evaporation (latent heat). Effects of these different surface energy exchanges on local climate (convective storms and fires) and comparisons with the Canadian BOREAS experiment are discussed. Following a classification of disturbances and their effects on ecosystem carbon balances, fire and logging are discussed as the main processes causing carbon losses that bypass heterotrophic respiration in Siberia. Following two approaches, NBP was estimated to be only about 13–16 mmol m–2 y–1 for Siberia. It may reach 67 mmol m–2 y–1 in North America, and about 140–400 mmol m–2 y–1 in Scandinavia. We conclude that fire speeds up the carbon cycle, but that it results also in long-term carbon sequestration by charcoal formation. For at least 14 years after logging, regrowth forests remain net sources of CO2 to the atmosphere. This has important implications regarding the effects of Siberian forest management on atmospheric concentrations. For many years after logging has taken place, regrowth forests remain weaker sinks for atmospheric CO2 than are nearby old-growth forests.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    ISSN: 1365-3040
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Plants of Cirsium vulgare (Savi) Ten. were cultivated under five different nitrogen regimes in order to investigate the effects of nitrogen supply on the storage processes in a biennial species during its first year of growth.External N supply increased total biomass production without changing the relationship between ‘productive plant compartments’ (i.e. shoot plus fine roots) and ‘storage plant compartments’ (i.e. structural root dry weight, which is defined as the difference between tap root biomass and the amount of stored carbohydrates and N compounds). The amount of carbohydrates and N compounds stored per unit of structural tap root dry weight was not affected by external N availability during the season, because high rates of N supply increased the concentration of N compounds whilst decreasing the carbohydrate concentration, and low rates of N supply had the opposite effect. Mobilization of N from senescing leaves was not related to the N status of the plants. The relationship between nitrogen compounds stored in the tap root and the maximum amount of nitrogen in leaves was an increasing function with increasing nitrogen supply. We conclude that the allocation between vegetative plant growth and the growth of storage structures over a wide range of N availability seems to follow predictions from optimum allocation theory, whereas N storage responds in a rather plastic way to N availability.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    ISSN: 1432-1939
    Keywords: Key wordsPinus sylvestris ; Siberia ; Biomass ; Self-thinning ; Forest fire
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The study presents a data set of above-ground biomass (AGB), structure, spacing and fire regime, for 24 stands of pristine Siberian Scots pine (Pinus sylvestris) forests with lichens (n = 20) or Vaccinium/mosses (n = 4) as ground cover, along four chronosequences. The stands of the “lichen” site type (LT) were stratified into three chronosequences according to stand density and fire history. Allometric equations were established from 90 sample trees for stem, coarse branch, fine branch, twig and needle biomass. The LT stands exhibited a low but sustained biomass accumulation until a stand age of 383 years. AGB reached only 6–10 kgdw m−2 after 200 years depending on stand density and fire history compared to 20 kgdw m−2 in the “Vaccinium” type (VT) stands. Leaf area index (LAI) in the LT stands remained at 0.5–1.5 and crown cover was 30–60%, whereas LAI reached 2.5 and crown cover was 〉100% in the VT stands. Although nearest-neighbour analyses suggested the existence of density-dependent mortality, fire impact turned out to have a much stronger effect on density dynamics. Fire scar dating and calculation of mean and initial fire return intervals revealed that within the LT stands differences in structure and biomass were related to the severity of fire regimes, which in turn was related to the degree of landscape fragmentation by wetlands. Self-thinning analysis was used to define the local carrying capacity for biomass. A series of undisturbed LT stands was used to characterise the upper self-thinning boundary. Stands that had experienced a moderate fire regime were positioned well below the self-thinning boundary in a distinct fire-thinning band of reduced major axis regression slope −0.26. We discuss how this downward shift resulted from alternating phases of density reduction by fire and subsequent regrowth. We conclude that biomass in Siberian Scots pine forests is strongly influenced by fire and that climate change will affect ecosystem functions predominantly via changes in fire regimes.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Electronic Resource
    Electronic Resource
    Springer
    Oecologia 82 (1990), S. 427-429 
    ISSN: 1432-1939
    Keywords: Insectivorous plants ; Insect capture ; Leaf growth ; Nitrogen storage ; Drosera
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Rates of insect capture increased with leaf area in the insectivorous plant Drosera rotundifolia, and growth of new leaves was related to insect capture. However, increased leaf growth was counterbalanced by leaf abscission which was in turn related to insect capture and leaf growth. Leaf loss equaled leaf growth in plants having natural rate of insect capture. A large proportion of the nitrogen gain from prey was stored in the hypocotyl; it was estimated from feeding experiments that about 24% to 30% of the nitrogen stored in the hypocotyl after winter originated from insect capture in the previous season. The effect of insect capture is discussed in relation to the life cycle of Drosera.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    ISSN: 1432-2048
    Keywords: Nicotiana (transformed with antisense DNA) ; Photosynthesis ; Ribulose-1,5-bisphosphate carboxylase-oxygenase ; Transgenic plant (antisense)
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Experiments were carried out to determine how decreased expression of ribulose-1,5-bisphosphate carboxylase-oxygenase (Rubisco) affects photosynthetic metabolism in ambient growth conditions. In a series of tobacco (Nicotiana tabacum L.) plants containing progressively smaller amounts of Rubisco the rate of photosynthesis was measured under conditions similar to those in which the plants had been grown (310 μmol photons · m−2 · s−1, 350 μbar CO2, 22° C). (i) There was only a marginal inhibition (6%) of photosynthesis when Rubisco was decreased to about 60% of the amount in the wildtype. The reduced amount of Rubisco was compensated for by an increase in Rubisco activation (rising from 60 to 100%), with minor contributions from an increase of its substrates (ribulose-1,5-bisphosphate and the internal CO2 concentration) and a decrease of its product (glycerate-3-phosphate). (ii) The decreased amount of Rubisco was accompanied by an increased ATP/ADP ratio that may be causally linked to the increased activation of Rubisco. An increase of highenergy-state chlorophyll fluorescence shows that thylakoid membrane energisation and high-energy-state-dependent energy dissipation at photosystem two had also increased. (iii) A further decrease of Rubisco (in the range of 50–20% of the wildtype level) resulted in a strong and proportional inhibition of CO2 assimilation. This was accompanied by a decrease of fructose-1,6-bisphosphatase activity, coupling-factor 1 (CF1)-ATP-synthase protein, NADP-malate dehydrogenase protein, and chlorophyll. The chlorophyll a/b ratio did not change, and enolase and sucrose-phosphate synthase activity did not decrease. It is argued that other photosynthetic enzymes are also decreased once Rubisco decreases to the point at which it becomes strongly limiting for photosynthesis. (iv) It is proposed that the amount of Rubisco in the wildtype represents a balance between the demands of light, water and nitrogen utilisation. The wildtype overinvests about 15% more protein in Rubisco than is needed to avoid a strict Rubisco limitation of photosynthesis. However, this “excess” Rubisco allows the wildtype to operate with lower thylakoid energisation, and decreased high-energy-state-dependent energy dissipation, hence increasing light-use efficiency by about 6%. It also allows the wildtype to operate with a lower internal CO2 concentration in the leaf and a lower stomatal conductance at a given rate of photosynthesis, so that instantaneous water-use efficiency is marginally (8%) increased.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    ISSN: 1432-2048
    Keywords: Flux control (photosynthesis) ; Nicotiana (transformed with antisense DNA) ; Ribulose-1,5-bisphosphate carboxylase-oxygenase (control of photosynthesis) ; Transgenic plant (antisense)
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Transgenic tobacco (Nicotiana tabacum L.) plants transformed with ‘antisense’ rbcS to produce a series of plants with a progressive decrease in the amount of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) have been used to investigate the contribution of Rubsico to the control of photosynthesis at different irradiance, CO2 concentrations and vapour-pressure deficits. Assimilation rates, transpiration, the internal CO2 concentration and chlorophyll fluorescence were measured in each plant. (i) The flux-control coefficient of Rubisco was estimated from the slope of the plot of Rubisco content versus assimilation rate. The flux-control coefficient had a value of 0.8 or more in high irradiance, (1050 μmol·m−2·s−1), low-vapour pressure deficit (4 mbar) and ambient CO2 (350 μbar). Control was marginal in enhanced CO2 (450 μbar) or low light (310 μmol·m−2·s−1) and was also decreased at high vapour-pressure deficit (17 mbar). No control was exerted in 5% CO2. (ii) The flux-control coefficients of Rubisco were compared with the fractional demand placed on the calculated available Rubisco capacity. Only a marginal control on photosynthetic flux is exerted by Rubisco until over 50% of the available capacity is being used. Control increases as utilisation rises to 80%, and approaches unity (i.e. strict limitation) when more than 80% of the available capacity is being used. (iii) In low light, plants with reduced Rubisco have very high energy-dependent quenching of chlorophyll fluorescence (qE) and a decreased apparent quantum yield. It is argued that Rubisco still exerts marginal control in these conditions because decreased Rubisco leads to increased thylakoid energisation and high-energy dependent dissipation of light energy, and lower light-harvesting efficiency. (iv) The flux-control coefficient of stomata for photosynthesis was calculated from the flux-control coefficient of Rubisco and the internal CO2 concentration, by applying the connectivity theorem. Control by the stomata varies between zero and about 0.25. It is increased by increased irradiance, decreased CO2 or decreased vapour-pressure deficit. (v) Photosynthetic oscillations in saturating irradiance and CO2 are suppressed in decreased-activity transformants before the steady-state rate of photosynthesis is affected. This provides direct evidence that these oscillations reveal the presence of “excess” Rubisco. (vi) Comparison of the flux-control coefficients of Rubisco with mechanistic models of photosynthesis provides direct support for the reliability of these models in conditions where Rubisco has a flux-control coefficient approach unity (i.e. “limits” photosynthesis), but also indicates that these models are less useful in conditions where control is shared between Rubisco and other components of the photosynthetic apparatus.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    ISSN: 1432-2048
    Keywords: Nicotiana (photosynthesis) ; Nitrogen ; Photosynthesis (control analysis) ; Ribulose-1,5-bisphosphate carboxylase-oxygenase ; Transgenic plant
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The effect of nitrogen supply during growth on the contribution of ribulose-1,5-bisphosphate carboxylase-oxygenase (Rubisco; EC 4.1.1.39) to the control of photosynthesis was examined in tobacco (Nicotiana tabacum L.). Transgenic plants transformed with antisense rbcS to produce a series of plants with a progressive decrease in the amount of Rubisco were used to allow the calculation of the flux-control coefficient of Rubisco for photosynthesis (CR). Several points emerged from the data: (i) The strength of Rubisco control of photosynthesis, as measured by CR, was altered by changes in the short-term environmental conditions. Generally, CR was increased in conditions of increased irradiance or decreased CO2. (ii) The amount of Rubisco in wild-type plants was reduced as the nitrogen supply during growth was reduced and this was associated with an increase in CR. This implied that there was a specific reduction in the amount of Rubisco compared with other components of the photosynthetic machinery. (iii) Plants grown with low nitrogen and which had genetically reduced levels of Rubisco had a higher chlorophyll content and a lower chlorophyll a/b ratio than wild-type plants. This indicated that the nitrogen made available by genetically reducing the amount of Rubisco had been re-allocated to other cellular components including light-harvesting and electron-transport proteins. It is argued that there is a “luxury” additional investment of nitrogen into Rubisco in tobacco plants grown in high nitrogen, and that Rubisco can also be considered a nitrogen-store, all be it one where the opportunity cost of the nitrogen storage is higher than in a non-functional storage protein (i.e. it allows for a slightly higher water-use efficiency and for photosynthesis to respond to temporarily high irradiance).
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    ISSN: 1432-2048
    Keywords: Light climate ; Nicotiana (photosynthesis) ; Photosynthesis ; Ribulose 1,5-bisphosphate carboxylase-oxygenase ; Transgenic plant (tobacco, antisense DNA)
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Tobacco (Nicotiana tabacum L.) plants transformed with ‘antisense’ rbcS to decrease the expression of ribulose-1,5-bisphosphate carboxylase-oxygenase (Rubisco) have been used to investigate the contribution of Rubisco to the control of photosynthesis in plants growing at different irradiances. Tobacco plants were grown in controlled-climate chambers under ambient CO2 at 20°C at 100, 300 and 750 μmol·m−2·s−1 irradiance, and at 28°C at 100, 300 and 1000 μmol·m−2·s−1 irradiance. (i) Measurement of photosynthesis under ambient conditions showed that the flux control coefficient of Rubisco (C infRubisco supA ) was very low (0.01–0.03) at low growth irradiance, and still fairly low (0.24–0.27) at higher irradiance. (ii) Short-term changes in the irradiance used to measure photosynthesis showed that C infRubisco supA increases as incident irradiance rises, (iii) When low-light (100 μmol·m−2·s−1)-grown plants are exposed to high (750–1000 μmol·m−2·s−1) irradiance, Rubisco is almost totally limiting for photosynthesis in wild types. However, when high-light-grown leaves (750–1000 μmol·m−2·s−1) are suddenly exposed to high and saturating irradiance (1500–2000 μmol·m−2·s−1), C infRubisco supA remained relatively low (0.23–0.33), showing that in saturating light Rubisco only exerts partial control over the light-saturated rate of photosynthesis in “sun” leaves; apparently additional factors are co-limiting photosynthetic performance, (iv) Growth of plants at high irradiance led to a small decrease in the percentage of total protein found in the insoluble (thylakoid fraction), and a decrease of chlorophyll, relative to protein or structural leaf dry weight. As a consequence of this change, high-irradiance-grown leaves illuminated at growth irradiance avoided an inbalance between the “light” reactions and Rubisco; this was shown by the low value of C infRubisco supA (see above) and by measurements showing that non-photochemical quenching was low, photochemical quenching high, and NADP-malate dehydrogenase activation was low at the growth irradiance. In contrast, when a leaf adapted to low irradiance was illuminated at a higher irradiance, Rubisco exerted more control, non-photochemical quenching was higher, photochemical quenching was lower, and NADP-malate dehydrogenase activation was higher than in a leaf which had grown at that irradiance. We conclude that changes in leaf composition allow the leaf to avoid a one-sided limitation by Rubisco and, hence, overexcitation and overreduction of the thylakoids in high-irradiance growth conditions, (v) ‘Antisense’ plants with less Rubisco contained a higher content of insoluble (thylakoid) protein and chlorophyll, compared to total protein or structural leaf dry weight. They also showed a higher rate of photosynthesis than the wild type, when measured at an irradiance below that at which the plant had grown. We propose that N-allocation in low light is not optimal in tobacco and that genetic manipulation to decrease Rubisco may, in some circumstances, increase photosynthetic performance in low light.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...