ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    Digitale Medien
    Digitale Medien
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Genetics 36 (2002), S. 47-73 
    ISSN: 0066-4197
    Quelle: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Thema: Biologie
    Notizen: Abstract Spirochetes are a medically important and ecologically significant group of motile bacteria with a distinct morphology. Outermost is a membrane sheath, and within this sheath is the protoplasmic cell cylinder and subterminally attached periplasmic flagella. Here we address specific and unique aspects of their motility and chemotaxis. For spirochetes, translational motility requires asymmetrical rotation of the two internally located flagellar bundles. Consequently, they have swimming modalities that are more complex than the well-studied paradigms. In addition, coordinated flagellar rotation likely involves an efficient and novel signaling mechanism. This signal would be transmitted over the length of the cell, which in some cases is over 100-fold greater than the cell diameter. Finally, many spirochetes, including Treponema, Borrelia, and Leptospira, are highly invasive pathogens. Motility is likely to play a major role in the disease process. This review summarizes the progress in the genetics of motility and chemotaxis of spirochetes, and points to new directions for future experimentation.
    Materialart: Digitale Medien
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Digitale Medien
    Digitale Medien
    New York, NY : Wiley-Blackwell
    Cell Motility and the Cytoskeleton 2 (1982), S. 369-383 
    ISSN: 0886-1544
    Schlagwort(e): motility ; flagella ; cilia ; microtubules ; Gregarines ; Life and Medical Sciences ; Cell & Developmental Biology
    Quelle: Wiley InterScience Backfile Collection 1832-2000
    Thema: Biologie , Medizin
    Notizen: The male gametes of the parasitic protozoan, Lecudina tuzetae, have a motile flagellum with a “6 + O” ultrastructure ‘Schrével and Besse, 1975’. These gametes were isolated from the cysts in which they develop and were observed and photographed under a variety of conditions. The flagella beat continuously, without stopping and starting, with a beat period of about 2 sec. They can beat in solutions whose viscosities are greater than 0.5 Nsm-2 (l Nsm-2 = 103 cP). The waveform can be approximated by a series of helical arcs and interconnecting straight regions that travel from the base to the tip. The helical regions have a radius of curvature of 3.2 μm and subtend a final angle of 1.7 radians. The straight portions are 2.0 μm in length. There are two sets of opposing bends, but they do not originate in the same plane. The resulting waveform is an approximately helical coil, with a pitch of 9.8 μm, a pitch angle of 0.6 radian and a peak-to-peak amplitude of 2.3 μm. The sense of the coil is left handed. The axoneme twists during beating. The main differences between the movement of this flagellum and that of typical 9 + 2 flagella are a low beat frequency and three-dimensional bends that produce relatively little forward movement of the cell. Twisting is discussed as a means of discriminating between some types of models of flagellar motility.
    Zusätzliches Material: 8 Ill.
    Materialart: Digitale Medien
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Digitale Medien
    Digitale Medien
    New York, NY : Wiley-Blackwell
    Cell Motility and the Cytoskeleton 2 (1982), S. 165-168 
    ISSN: 0886-1544
    Schlagwort(e): Life and Medical Sciences ; Cell & Developmental Biology
    Quelle: Wiley InterScience Backfile Collection 1832-2000
    Thema: Biologie , Medizin
    Zusätzliches Material: 3 Ill.
    Materialart: Digitale Medien
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    Digitale Medien
    Digitale Medien
    New York, NY : Wiley-Blackwell
    Cell Motility and the Cytoskeleton 9 (1988), S. 101-110 
    ISSN: 0886-1544
    Schlagwort(e): prokaryotic motility ; periplasmic flagella ; hydrodynamics ; model ; Life and Medical Sciences ; Cell & Developmental Biology
    Quelle: Wiley InterScience Backfile Collection 1832-2000
    Thema: Biologie , Medizin
    Notizen: Spirochetes are a group of bacteria with a unique ultrastructure and a fascinating swimming behavior. This article reviews the hydrodynamics of spirochete motility, and examines the motility of the spirochete Leptospira in detail. Models of Leptospira motility are discussed, and future experiments are proposed.The outermost structure of Leptospira is a membrane sheath, and within this sheath are a helically shaped cell cylinder and two periplasmic flagella. One periplasmic flagellum is attached subterminally at either end of the cell cylinder and extends partway down the length of the cell. In swimming cells, each end of the cell may assume either a spiral or a hook shape. Translational cells have the anterior end spiral shaped, and the posterior end hook shaped. In the model of Berg et al., the periplasmic flagella are believed to rotate between the sheath and the cell cylinder. Rotation of the anterior periplasmic flagellum causes the generation of a gyrating spiral-shaped wave. This wave is believed sufficient to propel the cells forward in a low-viscosity medium. The cell cylinder concomitantly rolls around the periplasmic flagella in the opposite direction - which allows the cell to literally screw through a gel-like viscous medium without slippage. This model is presented, and it is contrasted to previous models of Leptospira motility.
    Zusätzliches Material: 5 Ill.
    Materialart: Digitale Medien
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    Publikationsdatum: 2002-12-01
    Print ISSN: 0066-4197
    Digitale ISSN: 1545-2948
    Thema: Biologie
    Publiziert von Annual Reviews
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...