ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • retinoic acid  (1)
  • type I collagen  (1)
  • 1
    ISSN: 0730-2312
    Schlagwort(e): procollagen synthesis ; human osteosarcoma cells ; 1,25-dihydroxyvitamin D3 ; type I collagen ; proline hydroxylation ; Life and Medical Sciences ; Cell & Developmental Biology
    Quelle: Wiley InterScience Backfile Collection 1832-2000
    Thema: Biologie , Chemie und Pharmazie , Medizin
    Notizen: The kinetics of type I procollagen synthesis in a human osteosarcoma cell line, MG 63, were investigated after treatment with 1,25-dihydroxyvitamin D3 (1,25-(OH)2 D3), a hormonal inducer of phenotypic differentiation. Pulse label and chase experiments demonstrated greatly enhanced production and more rapid reduction of intracellular procollagen molecules in the 1,25-(OH)2 D3-treated cells as compared to the nontreated case. After a chase for 1 h, labeled procollagen was reduced by nine-tenths in 1,25-(OH)2 D3-treated cells, while half of the radioactivity still remained in nontreated cells. The expression rate of type I collagen, which was examined by pulse label experiment, was elevated in association with an increase in the mRNA coding for the type I collagen α1 chain by 1,25-(OH)2 D3 treatment. However, the amount of intracellular procollagen present after 4 h continuous labeling was almost the same, independent of the 1,25-(OH)2 D3 treatment. Thus, we conclude that strage of the molecule was not affected. The results therefore suggest an increase in both the synthesis and secretion of type I collagen. The 1,25-(OH)2 D3 treatment was also found to induce the α subunit of prolyl 4-hydroxylase and to be associated with an elevated level of hydroxyproline in the procollagen. Moreover, gelatinase B-resistant procollagen molecules, indicative of intracellular procollagen molecules in the stable triple helical form, were detected only in the 1,25-(OH)2 D3-treated cells. These data suggest more efficient proline hydroxylation is involved in rapid secretion of procollagen after hormone administration. The present evidence points to posttranslational control of procollagen synthesis. J. Cell. Biochem. 65:542-549. © 1997 Wiley-Liss Inc.
    Zusätzliches Material: 5 Ill.
    Materialart: Digitale Medien
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Digitale Medien
    Digitale Medien
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 68 (1998), S. 436-445 
    ISSN: 0730-2312
    Schlagwort(e): mouse ; PDI family proteins ; retinoic acid ; dibutyryl cAMP ; differentiation ; Life and Medical Sciences ; Cell & Developmental Biology
    Quelle: Wiley InterScience Backfile Collection 1832-2000
    Thema: Biologie , Chemie und Pharmazie , Medizin
    Notizen: We investigated the expression of protein disulfide isomerase family proteins (PDI, ERp61, and ERp72) in mouse F9 teratocarcinoma cells during differentiation induced by treatment with retinoic acid and dibutyryl cAMP. Each member of this family was expressed at a constitutive level in undifferentiated F9 cells. During differentiation of F9 cells to parietal or visceral endodermal cells the protein level of all these enzymes increased, although the extent of this increase in both protein and mRNA levels varied among the enzymes. Certain proteins were found to be co-immunoprecipitated with PDI, ERp61, and ERp72 in the presence of a chemical crosslinker. Type IV collagen was significantly coprecipitated with PDI whereas laminin was equally coprecipitated with the three proteins. Furthermore, 210 kDa protein characteristically coprecipitated with ERp72. Thus, the induction of PDI family proteins during the differentiation of F9 cells and their association with different proteins may implicate specific functions of each member of this family despite the common redox activity capable of catalyzing the disulfide bond formation. J. Cell. Biochem. 68:436-445, 1998. © 1998 Wiley-Liss, Inc.
    Zusätzliches Material: 6 Ill.
    Materialart: Digitale Medien
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...