ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • OPC-stimulation  (1)
  • calcium  (1)
  • 1
    Digitale Medien
    Digitale Medien
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 53 (1993), S. 114-121 
    ISSN: 0730-2312
    Schlagwort(e): osteoprogenitor cells ; differentiation ; alkaline phosphatase ; calcium ; Life and Medical Sciences ; Cell & Developmental Biology
    Quelle: Wiley InterScience Backfile Collection 1832-2000
    Thema: Biologie , Chemie und Pharmazie , Medizin
    Notizen: The ability of Levamisole to decrease mineralization in skeletal tissue is usually related to its effect on alkaline phosphatase (ALP). However, Levamisole is also suspected to diminish mineralization by an additional mechanism which is unrelated to the ALP control of apatite crystal growth. To delineate the time in differentiation during which Levamisole inhibits mineralization, a tissue culture model system of bone marrow stromal cells was used. Secondary cultures of stromal cells were propagated in osteoprogenitor cell (OPC) induction medium for three weeks, followed by measurement of calcium precipitation. In situ ALP assays at pH 7.6 were also performed. When cells were cultured with 0.2 mM Levamisole for three weeks, Day 20 values of calcium precipitates were lower than in controls, but Day 20 ALP values were paradoxically higher. The correlation between calcium and ALP within each group was low. The correlation slightly improved, in uninhibited cultures, when Day 21 calcium values were matched with earlier Day 12 ALP values. This suggested the existence of a Levamisole-sensitive mechanism for mineralization inhibition effective prior to the culture's mineralization stage. To focus on this early effect on mineralization Levamisole was added to stromal cultures on different days and removed on Day 12. Levamisole decreased Day 21 mineralization when added on Days 0, 3, 5, and 7, but not when added on Day 9. The Levamisole-induced inhibition of mineralization was accompanied by an increase in Day 12 ALP specific activity, compared to controls, when added from Day 5 and thereafter. The results indicate that part of the ability of stromal cells to mineralize is determined during the first week of culture. The early inhibitory effect of Levamisole on mineralization was associated with increased Day 12 ALP activity.
    Zusätzliches Material: 6 Ill.
    Materialart: Digitale Medien
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Digitale Medien
    Digitale Medien
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 53 (1993), S. 190-197 
    ISSN: 0730-2312
    Schlagwort(e): energy metabolism ; mineralization ; OPC-stimulation ; dexamethasone ; mitochondrial membrane ; Life and Medical Sciences ; Cell & Developmental Biology
    Quelle: Wiley InterScience Backfile Collection 1832-2000
    Thema: Biologie , Chemie und Pharmazie , Medizin
    Notizen: Bone marrow stromal cells contain colony forming cells with the potential to differentiate into osteoprogenitor (OPC) cells. OPC-stimulation medium, containing dexamethasone, ascorbate, and β-glycerophosphate is widely used to recruit OPCs in culture. Cultures were incubated 24 h with rhodamine 123 (Rho), on different days, to examine the effect of the OPC-stimulation medium on the mitochondrial membrane potential of stromal cells. Cultures grown in both ordinary medium (DMEM with 15% FCS) and OPC-stimulation medium showed 2 Rho retention peaks on days 3-4 and 10-11. Between days 5 and 10 there was a drop in Rho retention/cell. OPC-stimulation medium increased Rho retention by at least twice the amount relative to ordinary medium, and has quadrupled it on day 7. Incubation with Rho concentrations above 5.0 μg/ml inhibited the portion of increased Rho retention which was contributed by the OPC-stimulation medium. Prolonged exposure to 0.1, 1.0, and 10.0 μg/ml Rho for 12 days only slightly increased day 12 ALP activity/cell, had no effect on day-21 mineralization and only the high dose, 10.0 μg/ml, doubled stromal cell proliferation. Under 24 h incubation Rho concentrations of 1.0 μg/ml and below can serve as a marker for mitochondrial membrane potential in differentiating stromal cells. The results indicate that under both culture conditions stromal cell mitochondria undergo cycles of high and low membrane potential states and that the OPC-stimulation medium constantly maintains an elevated membrane potential relative to ordinary medium.
    Zusätzliches Material: 6 Ill.
    Materialart: Digitale Medien
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...