ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    Digitale Medien
    Digitale Medien
    Springer
    Plant cell reports 16 (1997), S. 411-415 
    ISSN: 1432-203X
    Schlagwort(e): Key words Somatic embryogenesis ; Picea glauca ; Nitrogen nutrition
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Biologie
    Notizen: Abstract The effects of glutamine-based dipeptides, glutamine and casein hydrolysate, as well as the deletion of organic nitrogen, were investigated during white spruce [Picea glauca (Moench) Voss] somatic embryogenesis. There were no differences in the fresh weight increase of the tissue masses grown on initiation medium with different combinations of organic nitrogen. This was also the case for subsequent growth on kinetin medium, except that glutamine alone produced a significantly lower fresh weight increase than the other organic nitrogen combinations. Without organic (i.e. with only inorganic) nitrogen in the medium, the fresh weight increase was significantly less than with organic nitrogen on both initiation and kinetin medium. No differences were found between the dry/fresh weight ratios obtained with the various nitrogen treatments. The number of mature embryos produced per gram fresh weight when cultured in the absence of organic nitrogen was significantly higher than that obtained in its presence. There were no differences in the total number of mature embryos produced in cultures grown with various organic nitrogen combinations or without organic nitrogen. There were large clone differences with respect to the number of mature somatic embryos per gram tissue and the total number of somatic embryos produced. Hence, nitrogen type influences culture growth rate but not the number of mature somatic embryos produced. The latter was clone dependent.
    Materialart: Digitale Medien
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Digitale Medien
    Digitale Medien
    Springer
    Plant cell reports 16 (1997), S. 411-415 
    ISSN: 1432-203X
    Schlagwort(e): Somatic embryogenesis ; Picea glauca ; Nitrogen nutrition
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Biologie
    Notizen: Abstract The effects of glutamine-based dipeptides, glutamine and casein hydrolysate, as well as the deletion of organic nitrogen, were investigated during white spruce [Picea glauca (Moench) Voss] somatic embryogenesis. There were no differences in the fresh weight increase of the tissue masses grown on initiation medium with different combinations of organic nitrogen. This was also the case for subsequent growth on kinetin medium, except that glutamine alone produced a significantly lower fresh weight increase than the other organic nitrogen combinations. Without organic (i.e. with only inorganic) nitrogen in the medium, the fresh weight increase was significantly less than with organic nitrogen on both initiation and kinetin medium. No differences were found between the dry/fresh weight ratios obtained with the various nitrogen treatments. The number of mature embryos produced per gram fresh weight when cultured in the absence of organic nitrogen was significantly higher than that obtained in its presence. There were no differences in the total number of mature embryos produced in cultures grown with various organic nitrogen combinations or without organic nitrogen. There were large clone differences with respect to the number of mature somatic embryos per gram tissue and the total number of somatic embryos produced. Hence, nitrogen type influences culture growth rate but not the number of mature somatic embryos produced. The latter was clone dependent.
    Materialart: Digitale Medien
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...