ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • Meteorology and Climatology; Earth Resources and Remote Sensing  (3)
  • 1
    Publikationsdatum: 2019-07-13
    Beschreibung: Forward simulation is an indispensable tool for evaluation of precipitation retrieval algorithms as well as for studying snow/ice microphysics and their radiative properties. The main challenge of the implementation arises due to the size of the problem domain. To overcome this hurdle, assumptions need to be made to simplify compiles cloud microphysics. It is important that these assumptions are applied consistently throughout the simulation process. ISSARS addresses this issue by providing a computationally efficient and modular framework that can integrate currently existing models and is also capable of expanding for future development. ISSARS is designed to accommodate the simulation needs of the Aerosol/Clouds/Ecosystems (ACE) mission and the Global Precipitation Measurement (GPM) mission: radars, microwave radiometers, and optical instruments such as lidars and polarimeter. ISSARS's computation is performed in three stages: input reconditioning (IRM), electromagnetic properties (scattering/emission/absorption) calculation (SEAM), and instrument simulation (ISM). The computation is implemented as a web service while its configuration can be accessed through a web-based interface.
    Schlagwort(e): Meteorology and Climatology; Earth Resources and Remote Sensing
    Materialart: Earth Science Technology Forum; Jun 21, 2011 - Jun 22, 2011; Pasadena, CA; United States
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Publikationsdatum: 2019-07-13
    Beschreibung: Atmospheric mineral dust particles have significant effects on climate and the environment, and despite notable advances in modeling and satellite and ground-based measurements, remain one of the major factors contributing to large uncertainty in aerosol radiative forcing. We examine the Multi-angle Imaging SpectroRadiometer (MISR) 11+ year aerosol data record to demonstrate MISR's unique strengths and assess potential biases of MISR products for dust study applications. In particular, we examine MISR's unique capabilities to 1) distinguish dust aerosol from spherical aerosol types, 2) provide aerosol optical depths over bright desert source regions, and 3) provide high-resolution retrievals of dust plume heights and associated winds. We show examples of regional and global MISR data products in dusty regions together with quantitative evaluations of product accuracies through comparisons with independent data sources, and demonstrate applications of MISR data to dust regional and climatological studies, such as dust property evolution during transport, dust source climatology in relation to climatic factors, and dust source dynamics. The potential use of MISR radiance data to study dust properties is also discussed.
    Schlagwort(e): Meteorology and Climatology; Earth Resources and Remote Sensing
    Materialart: SPIE Remote Sensing Conference; Sep 19, 2011 - Sep 22, 2011; Prague; Czechoslovakia
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Publikationsdatum: 2019-07-13
    Beschreibung: The Multi-angle Imaging Spectroradiometer (MISR) Joint Aerosol (JOINT_AS) Level 3 product has provided a global, descriptive summary of MISR Level 2 aerosol optical depth (AOD) and aerosol type information for each month over 16+ years since March 2000. Using Version 1 of JOINT_AS, which is based on the operational (Version 22) MISR Level 2 aerosol product, this study analyzes, for the first time, characteristics of observed and simulated distributions of AOD for three broad classes of aerosols: spherical nonabsorbing, spherical absorbing, and nonspherical - near or downwind of their major source regions. The statistical moments (means, standard deviations, and skew-nesses) and distributions of AOD by components derived from the JOINT_AS are compared with results from two chemistry transport models (CTMs), the Goddard Chemistry Aerosol Radiation and Transport (GOCART) and SPectral RadIatioN-TrAnSport (SPRINTARS). Overall, the AOD distributions retrieved from MISR and modeled by GOCART and SPRINTARS agree with each other in a qualitative sense. Marginal distributions of AOD for each aerosol type in both MISR and models show considerable high positive skewness, which indicates the importance of including extreme AOD events when comparing satellite retrievals with models. The MISR JOINT_AS product will greatly facilitate comparisons between satellite observations and model simulations of aerosols by type.
    Schlagwort(e): Meteorology and Climatology; Earth Resources and Remote Sensing
    Materialart: GSFC-E-DAA-TN41831 , Atmospheric Chemistry and Physics (ISSN 1680-7316) (e-ISSN 1680-7324); 16; 10; 6627-6640
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...