ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    Digitale Medien
    Digitale Medien
    Springer
    Oecologia 70 (1986), S. 466-474 
    ISSN: 1432-1939
    Schlagwort(e): Biennial plants ; Carbon partitioning ; Nitrogen partitioning ; Storage ; Harvest index
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Biologie
    Notizen: Summary Growth and nitrogen partitioning were investigated in the biennial monocarp Arctium tomentosum in the field, in plants growing at natural light conditions, in plants in which approximately half the leaf area was removed and in plants growing under 20% of incident irradiation. Growth quantities were derived from splined cubic polynomial exponential functions fitted to dry matter, leaf area and nitrogen data. Main emphasis was made to understanding of the significance of carbohydrate and nitrogen storage of a large tuber during a 2-years' life cycle, especially the effect of storage on biomass and seed yield in the second season. Biomass partitioning favours growth of leaves in the first year rosette stage. Roots store carbohydrates at a constant rate and increase storage of carbohydrates and nitrogen when the leaves decay at the end of the first season. In the second season the reallocation of carbohydrates from storage is relatively small, but reallocation of nitrogen is very large. Carbohydrate storage just primes the growth of the first leaves in the early growing season, nitrogen storage contributes 20% to the total nitrogen requirement during the 2nd season. The efficiency of carbohydrate storage for conversion into new biomass is about 40%. Nitrogen is reallocated 3 times in the second year, namely from the tuber to rosette leaves and further to flower stem leaves and eventually into seeds. The harvest index for nitrogen is 0.73, whereas for biomass it is only 0.19.
    Materialart: Digitale Medien
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    ISSN: 1432-1939
    Schlagwort(e): Storage ; Accumulation ; Reserve formation ; Storage structure ; Biennial plants
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Biologie
    Notizen: Abstract Four biennial species (Arctium tomentosum, Cirsium vulgare, Dipsacus sylvester and Daucus carota) which originate from habitats of different nutrient availability were investigated in a 2-year experiment in a twofactorial structured block design varying light (natural daylight versus shading) and fertilizer addition. The experiment was designed to study storage as reserve formation (competing with growth) or as accumulation (see Chapin et al. 1990). We show that (i) the previous definitions of storage excluded an important process, namely the formation of storage tissue. Depending on species, storage tissue and the filling process can be either a process of reserve formation, or a process of accumulation. (ii) In species representing low-resource habitats, the formation of a storage structure competes with other growth processes. Growth of storage tissue and filling with storage products is an accumulation process only in the high-resource plant Arctium tomentosum. We interpret the structural growth of low-resource plants in terms of the evolutionary history of these species, which have closely related woody species in the Mediterranean area. (iii) The use of storage products for early leaf growth determines the biomass development in the second season and the competitive ability of this species during growth with perennial species. (iv) The high-resource plant Arctium has higher biomass development under all conditions, i.e. plants of low-resource habitats are not superior under low-resource conditions. The main difference between high- and low-resource plants is that low-resource plants initiate flowering at a lower total plant internal pool size of available resources.
    Materialart: Digitale Medien
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...