ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • Wiley-Blackwell  (106)
  • American Association for the Advancement of Science (AAAS)  (74)
  • American Meteorological Society
Sammlung
  • 1
    facet.materialart.
    Unbekannt
    American Meteorological Society
    In:  EPIC3Bulletin of the American Meteorological Society, American Meteorological Society, 104(9), pp. s1-s10, ISSN: 0003-0007
    Publikationsdatum: 2024-05-08
    Beschreibung: 〈jats:title〉Abstract〈/jats:title〉 〈jats:p〉—J. BLUNDEN, T. BOYER, AND E. BARTOW-GILLIES〈/jats:p〉 〈jats:p〉Earth’s global climate system is vast, complex, and intricately interrelated. Many areas are influenced by global-scale phenomena, including the “triple dip” La Niña conditions that prevailed in the eastern Pacific Ocean nearly continuously from mid-2020 through all of 2022; by regional phenomena such as the positive winter and summer North Atlantic Oscillation that impacted weather in parts the Northern Hemisphere and the negative Indian Ocean dipole that impacted weather in parts of the Southern Hemisphere; and by more localized systems such as high-pressure heat domes that caused extreme heat in different areas of the world. Underlying all these natural short-term variabilities are long-term climate trends due to continuous increases since the beginning of the Industrial Revolution in the atmospheric concentrations of Earth’s major greenhouse gases.〈/jats:p〉 〈jats:p〉In 2022, the annual global average carbon dioxide concentration in the atmosphere rose to 417.1±0.1 ppm, which is 50% greater than the pre-industrial level. Global mean tropospheric methane abundance was 165% higher than its pre-industrial level, and nitrous oxide was 24% higher. All three gases set new record-high atmospheric concentration levels in 2022.〈/jats:p〉 〈jats:p〉Sea-surface temperature patterns in the tropical Pacific characteristic of La Niña and attendant atmospheric patterns tend to mitigate atmospheric heat gain at the global scale, but the annual global surface temperature across land and oceans was still among the six highest in records dating as far back as the mid-1800s. It was the warmest La Niña year on record. Many areas observed record or near-record heat. Europe as a whole observed its second-warmest year on record, with sixteen individual countries observing record warmth at the national scale. Records were shattered across the continent during the summer months as heatwaves plagued the region. On 18 July, 104 stations in France broke their all-time records. One day later, England recorded a temperature of 40°C for the first time ever. China experienced its second-warmest year and warmest summer on record. In the Southern Hemisphere, the average temperature across New Zealand reached a record high for the second year in a row. While Australia’s annual temperature was slightly below the 1991–2020 average, Onslow Airport in Western Australia reached 50.7°C on 13 January, equaling Australia's highest temperature on record.〈/jats:p〉 〈jats:p〉While fewer in number and locations than record-high temperatures, record cold was also observed during the year. Southern Africa had its coldest August on record, with minimum temperatures as much as 5°C below normal over Angola, western Zambia, and northern Namibia. Cold outbreaks in the first half of December led to many record-low daily minimum temperature records in eastern Australia.〈/jats:p〉 〈jats:p〉The effects of rising temperatures and extreme heat were apparent across the Northern Hemisphere, where snow-cover extent by June 2022 was the third smallest in the 56-year record, and the seasonal duration of lake ice cover was the fourth shortest since 1980. More frequent and intense heatwaves contributed to the second-greatest average mass balance loss for Alpine glaciers around the world since the start of the record in 1970. Glaciers in the Swiss Alps lost a record 6% of their volume. In South America, the combination of drought and heat left many central Andean glaciers snow free by mid-summer in early 2022; glacial ice has a much lower albedo than snow, leading to accelerated heating of the glacier. Across the global cryosphere, permafrost temperatures continued to reach record highs at many high-latitude and mountain locations.〈/jats:p〉 〈jats:p〉In the high northern latitudes, the annual surface-air temperature across the Arctic was the fifth highest in the 123-year record. The seasonal Arctic minimum sea-ice extent, typically reached in September, was the 11th-smallest in the 43-year record; however, the amount of multiyear ice—ice that survives at least one summer melt season—remaining in the Arctic continued to decline. Since 2012, the Arctic has been nearly devoid of ice more than four years old.〈/jats:p〉 〈jats:p〉In Antarctica, an unusually large amount of snow and ice fell over the continent in 2022 due to several landfalling atmospheric rivers, which contributed to the highest annual surface mass balance, 15% to 16% above the 1991–2020 normal, since the start of two reanalyses records dating to 1980. It was the second-warmest year on record for all five of the long-term staffed weather stations on the Antarctic Peninsula. In East Antarctica, a heatwave event led to a new all-time record-high temperature of −9.4°C—44°C above the March average—on 18 March at Dome C. This was followed by the collapse of the critically unstable Conger Ice Shelf. More than 100 daily low sea-ice extent and sea-ice area records were set in 2022, including two new all-time annual record lows in net sea-ice extent and area in February.〈/jats:p〉 〈jats:p〉Across the world’s oceans, global mean sea level was record high for the 11th consecutive year, reaching 101.2 mm above the 1993 average when satellite altimetry measurements began, an increase of 3.3±0.7 over 2021. Globally-averaged ocean heat content was also record high in 2022, while the global sea-surface temperature was the sixth highest on record, equal with 2018. Approximately 58% of the ocean surface experienced at least one marine heatwave in 2022. In the Bay of Plenty, New Zealand’s longest continuous marine heatwave was recorded.〈/jats:p〉 〈jats:p〉A total of 85 named tropical storms were observed during the Northern and Southern Hemisphere storm seasons, close to the 1991–2020 average of 87. There were three Category 5 tropical cyclones across the globe—two in the western North Pacific and one in the North Atlantic. This was the fewest Category 5 storms globally since 2017. Globally, the accumulated cyclone energy was the lowest since reliable records began in 1981. Regardless, some storms caused massive damage. In the North Atlantic, Hurricane Fiona became the most intense and most destructive tropical or post-tropical cyclone in Atlantic Canada’s history, while major Hurricane Ian killed more than 100 people and became the third costliest disaster in the United States, causing damage estimated at $113 billion U.S. dollars. In the South Indian Ocean, Tropical Cyclone Batsirai dropped 2044 mm of rain at Commerson Crater in Réunion. The storm also impacted Madagascar, where 121 fatalities were reported.〈/jats:p〉 〈jats:p〉As is typical, some areas around the world were notably dry in 2022 and some were notably wet. In August, record high areas of land across the globe (6.2%) were experiencing extreme drought. Overall, 29% of land experienced moderate or worse categories of drought during the year. The largest drought footprint in the contiguous United States since 2012 (63%) was observed in late October. The record-breaking megadrought of central Chile continued in its 13th consecutive year, and 80-year record-low river levels in northern Argentina and Paraguay disrupted fluvial transport. In China, the Yangtze River reached record-low values. Much of equatorial eastern Africa had five consecutive below-normal rainy seasons by the end of 2022, with some areas receiving record-low precipitation totals for the year. This ongoing 2.5-year drought is the most extensive and persistent drought event in decades, and led to crop failure, millions of livestock deaths, water scarcity, and inflated prices for staple food items.〈/jats:p〉 〈jats:p〉In South Asia, Pakistan received around three times its normal volume of monsoon precipitation in August, with some regions receiving up to eight times their expected monthly totals. Resulting floods affected over 30 million people, caused over 1700 fatalities, led to major crop and property losses, and was recorded as one of the world’s costliest natural disasters of all time. Near Rio de Janeiro, Brazil, Petrópolis received 530 mm in 24 hours on 15 February, about 2.5 times the monthly February average, leading to the worst disaster in the city since 1931 with over 230 fatalities.〈/jats:p〉 〈jats:p〉On 14–15 January, the Hunga Tonga-Hunga Ha'apai submarine volcano in the South Pacific erupted multiple times. The injection of water into the atmosphere was unprecedented in both magnitude—far exceeding any previous values in the 17-year satellite record—and altitude as it penetrated into the mesosphere. The amount of water injected into the stratosphere is estimated to be 146±5 Terragrams, or ∼10% of the total amount in the stratosphere. It may take several years for the water plume to dissipate, and it is currently unknown whether this eruption will have any long-term climate effect.〈/jats:p〉
    Repository-Name: EPIC Alfred Wegener Institut
    Materialart: Article , peerRev
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    facet.materialart.
    Unbekannt
    American Meteorological Society
    In:  EPIC3Bulletin of the American Meteorological Society, American Meteorological Society, 104(9), pp. s271-s321, ISSN: 0003-0007
    Publikationsdatum: 2024-05-08
    Repository-Name: EPIC Alfred Wegener Institut
    Materialart: Article , peerRev
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    facet.materialart.
    Unbekannt
    American Association for the Advancement of Science (AAAS)
    In: Science
    Publikationsdatum: 2019
    Print ISSN: 0036-8075
    Digitale ISSN: 1095-9203
    Thema: Biologie , Chemie und Pharmazie , Informatik , Medizin , Allgemeine Naturwissenschaft , Physik
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    facet.materialart.
    Unbekannt
    American Association for the Advancement of Science (AAAS)
    Publikationsdatum: 2019
    Beschreibung: 〈p〉Introduction of legal rights for nature could protect natural systems from destruction〈/p〉
    Print ISSN: 0036-8075
    Digitale ISSN: 1095-9203
    Thema: Allgemeine Naturwissenschaft
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    Publikationsdatum: 1999-09-25
    Beschreibung: Mass mortalities due to disease outbreaks have recently affected major taxa in the oceans. For closely monitored groups like corals and marine mammals, reports of the frequency of epidemics and the number of new diseases have increased recently. A dramatic global increase in the severity of coral bleaching in 1997-98 is coincident with high El Nino temperatures. Such climate-mediated, physiological stresses may compromise host resistance and increase frequency of opportunistic diseases. Where documented, new diseases typically have emerged through host or range shifts of known pathogens. Both climate and human activities may have also accelerated global transport of species, bringing together pathogens and previously unexposed host populations.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Harvell, C D -- Kim, K -- Burkholder, J M -- Colwell, R R -- Epstein, P R -- Grimes, D J -- Hofmann, E E -- Lipp, E K -- Osterhaus, A D -- Overstreet, R M -- Porter, J W -- Smith, G W -- Vasta, G R -- 1PO1 ES09563/ES/NIEHS NIH HHS/ -- New York, N.Y. -- Science. 1999 Sep 3;285(5433):1505-10.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Ecology and Evolutionary Biology, Cornell University, Ithaca, NY 14853, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10498537" target="_blank"〉PubMed〈/a〉
    Schlagwort(e): Animals ; Aquaculture ; *Climate ; Cnidaria ; *Disease Outbreaks/*veterinary ; Humans ; Infection/epidemiology/*etiology/transmission/*veterinary ; *Marine Biology ; Oceans and Seas ; Water Pollution
    Print ISSN: 0036-8075
    Digitale ISSN: 1095-9203
    Thema: Biologie , Chemie und Pharmazie , Informatik , Medizin , Allgemeine Naturwissenschaft , Physik
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 6
    facet.materialart.
    Unbekannt
    American Association for the Advancement of Science (AAAS)
    Publikationsdatum: 1999-08-07
    Beschreibung: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Epstein, P R -- New York, N.Y. -- Science. 1999 Jul 16;285(5426):347-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for Health and the Global Environment, Harvard Medical School, Boston, MA 02115, USA. paul_epstein@hms.harvard.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10438299" target="_blank"〉PubMed〈/a〉
    Schlagwort(e): Africa, Eastern/epidemiology ; Animals ; *Climate ; Communicable Disease Control ; Communicable Diseases/*epidemiology/etiology ; Disease Outbreaks ; Ecosystem ; Forecasting ; *Global Health ; Humans ; Rift Valley Fever/*epidemiology/etiology/veterinary ; *Weather
    Print ISSN: 0036-8075
    Digitale ISSN: 1095-9203
    Thema: Biologie , Chemie und Pharmazie , Informatik , Medizin , Allgemeine Naturwissenschaft , Physik
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 7
    facet.materialart.
    Unbekannt
    American Association for the Advancement of Science (AAAS)
    Publikationsdatum: 1998-03-07
    Beschreibung: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Colwell, R R -- Epstein, P R -- Gubler, D -- Maynard, N -- McMichael, A J -- Patz, J A -- Sack, R B -- Shope, R -- New York, N.Y. -- Science. 1998 Feb 13;279(5353):968-9.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9490480" target="_blank"〉PubMed〈/a〉
    Schlagwort(e): *Climate ; Humans ; *Public Health ; Public Health Practice ; Research ; Risk Assessment
    Print ISSN: 0036-8075
    Digitale ISSN: 1095-9203
    Thema: Biologie , Chemie und Pharmazie , Informatik , Medizin , Allgemeine Naturwissenschaft , Physik
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 8
    Publikationsdatum: 1999-01-29
    Beschreibung: A carbapenem antibiotic, L-786,392, was designed so that the side chain that provides high-affinity binding to the penicillin-binding proteins responsible for bacterial resistance was also the structural basis for ameliorating immunopathology. Expulsion of the side chain upon opening of the beta-lactam ring retained antibacterial activity while safely expelling the immunodominant epitope. L-786,392 was well tolerated in animal safety studies and had significant in vitro and in vivo activities against methicillin- and vancomycin-resistant Staphylococci and vancomycin-resistant Enterococci.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Rosen, H -- Hajdu, R -- Silver, L -- Kropp, H -- Dorso, K -- Kohler, J -- Sundelof, J G -- Huber, J -- Hammond, G G -- Jackson, J J -- Gill, C J -- Thompson, R -- Pelak, B A -- Epstein-Toney, J H -- Lankas, G -- Wilkening, R R -- Wildonger, K J -- Blizzard, T A -- DiNinno, F P -- Ratcliffe, R W -- Heck, J V -- Kozarich, J W -- Hammond, M L -- New York, N.Y. -- Science. 1999 Jan 29;283(5402):703-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Merck Research Laboratories, Rahway, NJ 07065, USA. hugh_rosen@merck.com〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9924033" target="_blank"〉PubMed〈/a〉
    Schlagwort(e): Animals ; Antibodies/blood ; *Bacterial Proteins ; Carbapenems/chemistry/*immunology/metabolism/*pharmacology/toxicity ; Carrier Proteins/metabolism ; Dipeptidases/metabolism ; *Drug Design ; Drug Resistance, Microbial ; Drug Resistance, Multiple ; Enterococcus/drug effects ; Erythrocytes/immunology ; Haptens ; *Hexosyltransferases ; Humans ; Immunodominant Epitopes ; Immunoglobulin G/blood ; Lactams/chemical synthesis/chemistry/metabolism/*pharmacology ; Lymphocyte Activation ; Macaca mulatta ; Mice ; Mice, Inbred DBA ; Microbial Sensitivity Tests ; Muramoylpentapeptide Carboxypeptidase/metabolism ; Penicillin-Binding Proteins ; *Peptidyl Transferases ; Staphylococcal Infections/drug therapy ; Staphylococcus/drug effects ; Thiazoles/chemical synthesis/chemistry/metabolism/*pharmacology
    Print ISSN: 0036-8075
    Digitale ISSN: 1095-9203
    Thema: Biologie , Chemie und Pharmazie , Informatik , Medizin , Allgemeine Naturwissenschaft , Physik
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 9
    Publikationsdatum: 2002-05-11
    Beschreibung: The majority (〉99%) of microorganisms from the environment resist cultivation in the laboratory. Ribosomal RNA analysis suggests that uncultivated organisms are found in nearly every prokaryotic group, and several divisions have no known cultivable representatives. We designed a diffusion chamber that allowed the growth of previously uncultivated microorganisms in a simulated natural environment. Colonies of representative marine organisms were isolated in pure culture. These isolates did not grow on artificial media alone but formed colonies in the presence of other microorganisms. This observation may help explain the nature of microbial uncultivability.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kaeberlein, T -- Lewis, K -- Epstein, S S -- New York, N.Y. -- Science. 2002 May 10;296(5570):1127-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Biology Department, Northeastern University, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12004133" target="_blank"〉PubMed〈/a〉
    Schlagwort(e): Bacteria/classification/cytology/*growth & development/*isolation & purification ; *Bacteriological Techniques ; Colony Count, Microbial ; Culture Media ; DNA, Bacterial/analysis/genetics ; DNA, Ribosomal/analysis/genetics ; Diffusion Chambers, Culture ; Geologic Sediments/*microbiology ; Molecular Sequence Data ; RNA, Ribosomal, 16S/genetics ; *Seawater ; Silicon Dioxide
    Print ISSN: 0036-8075
    Digitale ISSN: 1095-9203
    Thema: Biologie , Chemie und Pharmazie , Informatik , Medizin , Allgemeine Naturwissenschaft , Physik
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 10
    Publikationsdatum: 2001-04-09
    Beschreibung: The Drosophila melanogaster gene insulin-like receptor (InR) is homologous to mammalian insulin receptors as well as to Caenorhabditis elegans daf-2, a signal transducer regulating worm dauer formation and adult longevity. We describe a heteroallelic, hypomorphic genotype of mutant InR, which yields dwarf females with up to an 85% extension of adult longevity and dwarf males with reduced late age-specific mortality. Treatment of the long-lived InR dwarfs with a juvenile hormone analog restores life expectancy toward that of wild-type controls. We conclude that juvenile hormone deficiency, which results from InR signal pathway mutation, is sufficient to extend life-span, and that in flies, insulin-like ligands nonautonomously mediate aging through retardation of growth or activation of specific endocrine tissue.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tatar, M -- Kopelman, A -- Epstein, D -- Tu, M P -- Yin, C M -- Garofalo, R S -- R01 AG16632/AG/NIA NIH HHS/ -- New York, N.Y. -- Science. 2001 Apr 6;292(5514):107-10.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Brown University, Providence, RI 02912, USA., University of Massachusetts, Amherst, MA 01003, USA. Marc_Tatar@Brown.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11292875" target="_blank"〉PubMed〈/a〉
    Schlagwort(e): Aging/*physiology ; Alleles ; Animals ; Carrier Proteins/*genetics/*physiology ; Corpora Allata/*metabolism ; *Drosophila Proteins ; Drosophila melanogaster/genetics/*physiology ; Female ; Fertility ; Genes, Insect ; Genotype ; Insulin/pharmacology ; Juvenile Hormones/metabolism ; Longevity/*physiology ; Male ; Methoprene/pharmacology ; Mutation ; Protein-Tyrosine Kinases/*genetics/*physiology ; *Receptor Protein-Tyrosine Kinases ; Receptor, Insulin/genetics/physiology ; Reproduction ; Signal Transduction ; Superoxide Dismutase/metabolism ; Triglycerides/metabolism ; Vitellogenesis/drug effects
    Print ISSN: 0036-8075
    Digitale ISSN: 1095-9203
    Thema: Biologie , Chemie und Pharmazie , Informatik , Medizin , Allgemeine Naturwissenschaft , Physik
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...