ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    Digitale Medien
    Digitale Medien
    Springer
    Journal of muscle research and cell motility 10 (1989), S. 25-33 
    ISSN: 1573-2657
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Biologie , Medizin
    Notizen: Summary The reactive thiol of the myosin head, SH-1, can be selectively labelled in glycerinated rabbit muscle fibres. This residue has been used as an attachment site for either fluorescent or spectroscopic probes which report on head movements and orientations in various functional states of muscle. We have specifically modified SH-1in vitro, using purified rabbit myosin and conditions similar to those employed in the labelling of muscle fibres (low ionic strength [40mM NaCl] at 4°C), with stoichiometric amounts of either [14C]-iodoacetamide, 5-(2((iodoacetyl)amino)ethyl) aminonaphthalene-1-sulphonic acid (IAEDANS), or 4-(2-iodoacetamido-2,2,6,6-tetramethyl piperidinooxyl (IASL). The specificity of modification was determined by measuring the well-defined alterations in the high salt ATPase activities of myosin and by localizing both IAAm and IAEDANS to the 20-kDa C-terminal subfragment 1 (S1) which contains SH-1. The low ionic strength actin-activated Mg2+-ATPase of SH-1-modified rabbit myosin was measured in the presence of the thin filament regulatory, complex, troponin-tropomyosin. A significant increase in this activity in the absence of calcium, concomitant with a decrease in activity in the presence of calcium, was observed as the extent of SH-1 modification was incrementally increased from zero to one mole of label bound per mole of SH-1. The elevated myosin Mg2+-ATPase, which results from SH-1 modification, does not account for the increased actin-activated Mg2+-ATPase in resting conditions (i.e. in the absence of calcium). Thein vitro actin-activated Mg2+-ATPase activities become equal in both active and resting conditions when one mole of SH-1 is modified per mole of myosin head. These results demonstrate that SH-1 is located in a region of the myosin head which plays a part in the calcium-sensitive regulation of the actin-activated Mg2+-ATPase by troponin-tropomyosin. These studies also indicate that SH-1-labelled preparations may not be suitable for the analysis of myosin head motion and/or orientation in the resting state.
    Materialart: Digitale Medien
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Digitale Medien
    Digitale Medien
    Springer
    Journal of muscle research and cell motility 17 (1996), S. 411-424 
    ISSN: 1573-2657
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Biologie , Medizin
    Notizen: Summary The simple eukaryote Dictyostelium discoideum contains at least 12 unconventional myosin genes. Here we report the characterization of one of these, myoJ, a gene initially identified through a physical mapping screen. The myoJ gene encodes a high molecular weight myosin, and analysis of the available deduced amino acid sequence reveals that it possesses six IQ motifs and sequences typical of alpha helical coiled coils in the tail region. Therefore, myoJ is predicted to exist as a dimer with up to 12 associated light chains (six per heavy chain). The 7.8 kb myoJ mRNA is expressed all throughout the life cycle of D. discoideum. The myoJ gene has been disrupted and a phenotypic analysis of the mutant cells initiated. Finally, phylogenetic analysis of the head region reveals that myoJ is most similar to two plant myosin genes, Arabidopsis MYA1 and MYA2, that have been alternatively suggested to be either members of the myosin V class or founding members of the myosin XI class.
    Materialart: Digitale Medien
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...