ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    Publikationsdatum: 2019-09-24
    Beschreibung: Large quantities of methane are stored in hydrates and permafrost within shallow marine sediments in the Arctic Ocean. These reservoirs are highly sensitive to climate warming, but the fate of methane released from sediments is uncertain. Here, we review the principal physical and biogeochemical processes that regulate methane fluxes across the seabed, the fate of this methane in the water column, and potential for its release to the atmosphere. We find that, at present, fluxes of dissolved methane are significantly moderated by anaerobic and aerobic oxidation of methane. If methane fluxes increase then a greater proportion of methane will be transported by advection or in the gas phase, which reduces the efficiency of the methanotrophic sink. Higher freshwater discharge to Arctic shelf seas may increase stratification and inhibit transfer of methane gas to surface waters, although there is some evidence that increased stratification may lead to warming of sub-pycnocline waters, increasing the potential for hydrate dissociation. Loss of sea-ice is likely to increase wind speeds and seaair exchange of methane will consequently increase. Studies of the distribution and cycling of methane beneath and within sea ice are limited, but it seems likely that the sea-air methane flux is higher during melting in seasonally ice-covered regions. Our review reveals that increased observations around especially the anaerobic and aerobic oxidation of methane, bubble transport, and the effects of ice cover, are required to fully understand the linkages and feedback pathways between climate warming and release of methane from marine sediments.
    Materialart: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    facet.materialart.
    Unbekannt
    EMBS
    In:  EPIC3European Marine Biology Symposium, Helgoland, 2015-09-21-2015-09-25Helgoland, EMBS
    Publikationsdatum: 2015-09-23
    Beschreibung: Rivers represent a transition zone between terrestric and aquatic environments, as well as a transition zone between methane rich and methane poor environments. Methane concentrations in freshwater systems are in general higher than in marine systems. The Elbe River is one of the important rivers draining into the North Sea and with the Elbe river high amounts of methane are imported into the water column of the North Sea. The major biological sink is the oxidation of methane by aerobic methanotrophic bacteria. Eight cruises from November 2013 until November 2014 were conducted from Hamburg towards Helgoland. Methane oxidation rate was measured with radiotracers and methanotrophic abundance was assessed by q-PCR. Community fingerprinting was performed with monooxygenase intergenic spacer analysis (MISA). Combining all the data we could identify four environments (marine, coast, outer and inner estuary) with significantly different abundances. The marine environment had lowest abundances and highest abundances were found in the inner estuary. Comparison of the corresponding communities is in progress.
    Repository-Name: EPIC Alfred Wegener Institut
    Materialart: Conference , notRev
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...