ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    Publikationsdatum: 2020-05-15
    Beschreibung: Studying the response of streamwater chemistry to changes in discharge can provide valuable insights into how catchments store and release water and solutes. Previous studies have determined concentration–discharge (cQ) relationships from long-term, low-frequency data of a wide range of solutes. These analyses, however, provide little insight into the coupling of solute concentrations and flow during individual hydrologic events. Event-scale cQ relationships have rarely been investigated across a wide range of solutes and over extended periods of time, and thus little is known about differences and similarities between event-scale and long-term cQ relationships. Differences between event-scale and long-term cQ behavior may provide useful information about the processes regulating their transport through the landscape. Here we analyze cQ relationships of 14 different solutes, ranging from major ions to trace metals, as well as electrical conductivity, in the Swiss Erlenbach catchment. From a 2-year time series of sub-hourly solute concentration data, we determined 2-year cQ relationships for each solute and compared them to cQ relationships of 30 individual events. The 2-year cQ behavior of groundwater-sourced solutes was representative of their cQ behavior during hydrologic events. Other solutes, however, exhibited very different cQ patterns at the event scale and across 2 consecutive years. This was particularly true for trace metals and atmospheric and/or biologically active solutes, many of which exhibited highly variable cQ behavior from one event to the next. Most of this inter-event variability in cQ behavior could be explained by factors such as catchment wetness, season, event size, input concentrations, and event-water contributions. We present an overview of the processes regulating different groups of solutes, depending on their origin in and pathways through the catchment. Our analysis thus provides insight into controls on solute variations at the hydrologic event scale.
    Print ISSN: 1027-5606
    Digitale ISSN: 1607-7938
    Thema: Geographie , Geologie und Paläontologie
    Publiziert von Copernicus im Namen von European Geosciences Union.
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Publikationsdatum: 2013-10-22
    Beschreibung: Various 13CO2 labelling approaches exist to trace carbon (C) dynamics in plant-soil systems. However, it is not clear if the different approaches yield the same results. Moreover, there is no consistent way of data analysis to date. In this study we compare with the same experimental setup the two main techniques: the pulse and the continuous labelling. We evaluate how these techniques perform to estimate the C transfer velocity, the C partitioning along time and the C residence time in different plant-soil compartments. We used identical plant-soil systems (Populus deltoides x nigra, Cambisol soil) to compare the pulse labelling approach (exposure to 99 atom% 13CO2 for three hours, traced for eight days) with a continuous labelling (exposure to 10 atom% 13CO2, traced for 14 days). The experiments were conducted in climate chambers under controlled environmental conditions. Before label addition and at four successive sampling dates, the plant-soil systems were destructively harvested, separated into leaves, petioles, stems, cuttings, roots and soil and the microbial biomass was extracted from the soil. The soil CO2 efflux was sampled throughout the experiment. To model the C dynamics we used an exponential function to describe the 13C signal decline after pulse labelling. For the evaluation of the 13C distribution during the continuous labelling we suggest to use a logistic function. Pulse labelling is best suited to assess the maximum C transfer velocity from the leaves to other compartments. With continuous labelling, the mean transfer velocity through a compartment, including short-term storage pools, can be observed. The C partitioning between the plant-soil compartments was similar for both techniques, but the time of sampling had a large effect: shortly after labelling the allocation into leaves was overestimated and the soil 13CO2 efflux underestimated. The results of belowground C partitioning were consistent for the two techniques only after eight days of labelling, when the 13C import and export was at equilibrium. The C mean residence time estimated by the rate constant of the exponential and logistic function was not valid here. However, the duration of the accumulation phase (continuous labelling) could be used to estimate the C residence time. Pulse and continuous labelling techniques are both well suited to assess C cycling. With pulse labelling the dynamics of fresh assimilates can be traced, whereas the continuous labelling gives a more integrated result on C cycling, due to the homogeneous labelling of C pools and fluxes. The logistic model suggested here, has the potential to assess different parameters of C cycling independent on the sampling date and with no disputable assumptions.
    Print ISSN: 1810-6277
    Digitale ISSN: 1810-6285
    Thema: Biologie , Geologie und Paläontologie
    Publiziert von Copernicus im Namen von European Geosciences Union.
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Publikationsdatum: 2014-11-18
    Beschreibung: Isotope labelling is a powerful tool to study elemental cycling within terrestrial ecosystems. Here we describe a new multi-isotope technique to label organic matter (OM). We exposed poplars (Populus deltoides x nigra) for 14 days to an atmosphere enriched in 13CO2 and depleted in 2H218O. After one week, the water-soluble leaf OM (δ13C = 1346 ± 162‰) and the leaf water were strongly labelled (δ18O = −63± 8‰, δ2H = −156 ± 15‰). The leaf water isotopic composition was between the atmospheric and stem water, indicating a considerable diffusion of vapour into the leaves (58–69%). The atomic ratios of the labels recovered (18O/13C, 2H/13C) were 2–4 times higher in leaves than in the stems and roots. This either indicates the synthesis of more condensed compounds (lignin vs. cellulose) in roots and stems, or be the result of O and H exchange and fractionation processes during transport and biosynthesis. We demonstrate that the three major OM elements (C, O, H) can be labelled and traced simultaneously within the plant. This approach could be of interdisciplinary interest for the fields of plant physiology, paleoclimatic reconstruction or soil science.
    Print ISSN: 1810-6277
    Digitale ISSN: 1810-6285
    Thema: Biologie , Geologie und Paläontologie
    Publiziert von Copernicus im Namen von European Geosciences Union.
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    Publikationsdatum: 1956-12-31
    Print ISSN: 0016-7312
    Digitale ISSN: 2194-8798
    Thema: Ethnologie , Geographie
    Publiziert von Copernicus
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    Publikationsdatum: 2013-08-29
    Beschreibung: The ground-based radiometer GROMOS, stationed in Bern (47.95° N, 7.44° E), Switzerland, has a unique dataset: it obtains ozone profiles from November 1994 to present with a time resolution of 30 min and equal quality during night- and daytime. Here, we derive a monthly climatology of the daily ozone cycle from 17 yr of GROMOS observation. We present the diurnal ozone variation of the stratosphere and mesosphere. Characterizing the diurnal cycle of stratospheric ozone is important for correct trend estimates of the ozone layer derived from satellite observations. The diurnal ozone cycle from GROMOS is compared to two models: The Whole Atmosphere Community Climate Model (WACCM) and the Hamburg Model of Neutral and Ionized Atmosphere (HAMMONIA). Aura Microwave Limb Sounder (Aura/MLS) ozone data, from night- and daytime overpasses over Bern, have also been included in the comparison. Generally, observation and models show good qualitative agreement: in the lower mesosphere, daytime ozone is for both GROMOS and models around 25% less than nighttime ozone (reference is 22:30–01:30). In the stratosphere, ozone reaches its maximum in the afternoon showing values several percent larger than the midnight value. It is important that diurnal ozone variations of this order are taken into account when merging different data sets for the derivation of long-term ozone trends in the stratosphere. Further, GROMOS and models indicate a seasonal behavior of daily ozone variations in the stratosphere with a larger afternoon maximum during daytime in summer than in winter. At 0.35 hPa, observations from GROMOS and Aura/MLS show a seasonal pattern in diurnal ozone variations with larger relative amplitudes during daytime in winter (−25 ± 5%) than in summer (−18 ± 4%) (compared to mean values around midnight). For the first time, a time series of the diurnal variations in ozone is presented: 17 yr of GROMOS data show strong interannual variations in the diurnal ozone cycle for both the stratosphere and the mesosphere. There are some indications that strong temperature tides can suppress the diurnal variation of stratospheric ozone via the anticorrelation of temperature and ozone. That means the spatio-temporal variability of solar thermal tides seems to affect the diurnal cycle of stratospheric ozone.
    Digitale ISSN: 1680-7375
    Thema: Geologie und Paläontologie
    Publiziert von Copernicus im Namen von European Geosciences Union.
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 6
    Publikationsdatum: 2014-03-27
    Beschreibung: Various 13CO2 labelling approaches exist to trace carbon (C) dynamics in plant-soil systems. However, it is not clear if the different approaches yield the same results. Moreover, there is no consistent way of data analysis to date. In this study we compare with the same experimental setup the two main techniques: pulse and continuous labelling. We evaluate how these techniques perform to estimate the C transfer time, the C partitioning along time and the C residence time in different plant-soil compartments. We used identical plant-soil systems (Populus deltoides × nigra, Cambisol soil) to compare the pulse labelling approach (exposure to 99 atom % 13CO2 for three hours, traced for eight days) with a continuous labelling (exposure to 10 atom % 13CO2, traced for 14 days). The experiments were conducted in climate chambers under controlled environmental conditions. Before label addition and at four successive sampling dates, the plant-soil systems were destructively harvested, separated into leaves, petioles, stems, cuttings, roots and soil and soil microbial biomass was extracted. The soil CO2 efflux was sampled throughout the experiment. To model the C dynamics we used an exponential function to describe the 13C signal decline after pulse labelling. For the evaluation of the 13C distribution during the continuous labelling we applied a logistic function. Pulse labelling is best suited to assess the minimum C transfer time from the leaves to other compartments, while continuous labelling can be used to estimate the mean transfer time through a compartment, including short-term storage pools. The C partitioning between the plant-soil compartments obtained was similar for both techniques, but the time of sampling had a large effect: shortly after labelling the allocation into leaves was overestimated and the soil 13CO2 efflux underestimated. The results of belowground C partitioning were consistent for the two techniques only after eight days of labelling, when the 13C import and export was at equilibrium. The C mean residence times estimated by the rate constant of the exponential and logistic function were not valid here (non-steady state). However, the duration of the accumulation phase (continuous labelling) could be used to estimate the C residence time. Pulse and continuous labelling techniques are both well suited to assess C cycling. With pulse labelling, the dynamics of fresh assimilates can be traced, whereas the continuous labelling gives a more integrated result of C cycling, due to the homogeneous labelling of C pools and fluxes. The logistic model applied here, has the potential to assess different parameters of C cycling independent on the sampling date and with no disputable assumptions.
    Print ISSN: 1726-4170
    Digitale ISSN: 1726-4189
    Thema: Biologie , Geologie und Paläontologie
    Publiziert von Copernicus im Namen von European Geosciences Union.
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 7
    Publikationsdatum: 2015-03-20
    Beschreibung: Isotope labelling is a powerful tool to study elemental cycling within terrestrial ecosystems. Here we describe a new multi-isotope technique to label organic matter (OM). We exposed poplars (Populus deltoides × nigra) for 14 days to an atmosphere enriched in 13CO2 and depleted in 2H218O. After 1 week, the water-soluble leaf OM (δ13C = 1346 ± 162‰) and the leaf water were strongly labelled (δ18O = −63 ± 8, δ2H = −156 ± 15‰). The leaf water isotopic composition was between the atmospheric and stem water, indicating a considerable back-diffusion of vapour into the leaves (58–69%) in the opposite direction to the net transpiration flow. The atomic ratios of the labels recovered (18O/13C, 2H/13C) were 2–4 times higher in leaves than in the stems and roots. This could be an indication of the synthesis of more condensed compounds in roots and stems (e.g. lignin vs. cellulose) or might be the result of O and H exchange and fractionation processes during phloem transport and biosynthesis. We demonstrate that the three major OM elements (C, O, H) can be labelled and traced simultaneously within the plant. This approach could be of interdisciplinary interest in the fields of plant physiology, palaeoclimatic reconstruction or soil science.
    Print ISSN: 1726-4170
    Digitale ISSN: 1726-4189
    Thema: Biologie , Geologie und Paläontologie
    Publiziert von Copernicus im Namen von European Geosciences Union.
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 8
    Publikationsdatum: 2013-04-25
    Beschreibung: Observations of the ozone profile by a ground-based microwave radiometer in Switzerland indicate a dominant 20-day oscillation in stratospheric ozone, possibly related to oscillations of the polar vortex edge during winter. For further understanding of the nature of the 20-day oscillation, the ozone data set of ERA Interim meteorological reanalysis is analyzed at the latitude belt of 47.5° N and in the time from 1979 to 2010. Spectral analysis of ozone time series at 7 hPa indicates that the 20-day oscillation is maximal at two locations: 7.5° E, 47.5° N and 60° E, 47.5° N. Composites of the stream function are derived for different phases of the 20-day oscillation of stratospheric ozone at 7 hPa in the Northern Hemisphere. The streamline at Ψ = −2 × 107 m2 s−1 is in the vicinity of the polar vortex edge. The other streamline at Ψ = 4 × 107 m2 s1 surrounds the Aleutian anticyclone and goes to the subtropics. The composites show 20-day period standing oscillations at the polar vortex edge and in the subtropics above Northern Africa, India, and China. The 20-day period standing oscillation above Aral Sea and India is correlated to the strength of the Aleutian anticyclone.
    Print ISSN: 0992-7689
    Digitale ISSN: 1432-0576
    Thema: Geologie und Paläontologie , Physik
    Publiziert von Copernicus im Namen von European Geosciences Union.
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 9
    Publikationsdatum: 2014-06-16
    Beschreibung: The ground-based radiometer GROMOS, stationed in Bern (47.95° N, 7.44° E), Switzerland, has a unique data set: it obtains ozone profiles from November 1994 to present with a time resolution of 30 min and equivalent quality during night- and daytime. Here, we derive a monthly climatology of the daily ozone cycle from 17 years of GROMOS observation. We present the diurnal ozone variation of the stratosphere and mesosphere. Characterizing the diurnal cycle of stratospheric ozone is important for correct trend estimates of the ozone layer derived from satellite observations. The diurnal ozone cycle from GROMOS is compared to two models: the Whole Atmosphere Community Climate Model (WACCM) and the Hamburg Model of Neutral and Ionized Atmosphere (HAMMONIA). Generally, observation and models show a good agreement: in the lower mesosphere, daytime ozone is for both GROMOS and models around 25% less than midnight ozone. In the stratosphere, ozone reaches its maximum in the afternoon showing values several percent larger than the midnight value. Further, GROMOS and models indicate a seasonal behaviour of the diurnal ozone variations in the stratosphere with a larger afternoon maximum during daytime in summer than in winter. Using the 17 years of ozone profiles from GROMOS, we find strong interannual variations in the diurnal ozone cycle for both the stratosphere and the mesosphere. Interannual variability in temperature, atmospheric circulation and composition may explain the observed interannual variability of the diurnal ozone cycle above Bern.
    Print ISSN: 1680-7316
    Digitale ISSN: 1680-7324
    Thema: Geologie und Paläontologie
    Publiziert von Copernicus im Namen von European Geosciences Union.
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 10
    Publikationsdatum: 2018-11-13
    Beschreibung: Catchment response to precipitation is often investigated using two-component isotope-based hydrograph separation, which quantifies the contribution of precipitation (i.e., event water Qe) or water from storage (i.e., pre-event water Qpe) to total discharge (Q) during storm events. In order to better understand streamflow-generating mechanisms, two-component hydrograph separation studies often seek to relate the event-water fraction Qe∕Q to storm characteristics or antecedent wetness conditions. However, these relationships may be obscured because the same factors that influence Qe also necessarily influence total discharge Q as well. Here we propose that the fractions of event water and pre-event water relative to total precipitation (Qe∕P and Qpe∕P), instead of total discharge, provide useful alternative tools for studying catchment storm responses. These two quantities separate the well-known runoff coefficient (Q∕P, i.e., the ratio between total discharge and precipitation volumes over the event timescale) into its contributions from event water and pre-event water. Whereas the runoff coefficient Q∕P quantifies how strongly precipitation inputs affect streamflow, the fractions Qe∕P and Qpe∕P track the sources of this streamflow response. We use high-frequency measurements of stable water isotopes for 24 storm events at a steep headwater catchment (Erlenbach, central Switzerland) to compare the storm-to-storm variations in Qe/Q,Qe/P and Qpe∕P. Our analysis explores how storm characteristics and antecedent wetness conditions affect the mobilization of event water and pre-event water at the catchment scale. Isotopic hydrograph separation shows that catchment outflow was typically dominated by pre-event water, although event water exceeded 50 % of discharge for several storms. No clear relationships were found linking either storm characteristics or antecedent wetness conditions with the volumes of event water or pre-event water (Qe, Qpe), or with event water as a fraction of discharge (Qe∕Q), beyond the unsurprising correlation of larger storms with greater Qe and greater total Q. By contrast, event water as a fraction of precipitation (Qe∕P) was strongly correlated with storm volume and intensity but not with antecedent wetness, implying that the volume of event water that is transmitted to streamflow increases more than proportionally with storm size under both wet and dry conditions. Conversely, pre-event water as a fraction of precipitation (Qpe∕P) was strongly correlated with all measures of antecedent wetness but not with storm characteristics, implying that wet conditions primarily facilitate the mobilization of old (pre-event) water, rather than the fast transmission of new (event) water to streamflow, even at a catchment where runoff coefficients can be large. Thus, expressing event- and pre-event-water volumes as fractions of precipitation rather than discharge was more insightful for investigating the Erlenbach catchment's hydrological behaviour. If Qe∕P and Qpe∕P exhibit similar relationships with storm characteristics and antecedent wetness conditions in other catchments, we suggest that these patterns may potentially be useful as diagnostic “fingerprints” of catchment storm response.
    Print ISSN: 1027-5606
    Digitale ISSN: 1607-7938
    Thema: Geographie , Geologie und Paläontologie
    Publiziert von Copernicus im Namen von European Geosciences Union.
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...