ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • Cambridge University Press  (2)
  • 1
    Publikationsdatum: 2008-05-14
    Beschreibung: The relevance of surface quasi-geostrophic dynamics (SQG) to the upper ocean and the atmospheric tropopause has been recently demonstrated in a wide range of conditions. Within this context, the properties of SQG in terms of kinetic energy (KE) transfers at the surface are revisited and further explored. Two well-known and important properties of SQG characterize the surface dynamics: (i) the identity between surface velocity and density spectra (when appropriately scaled) and (ii) the existence of a forward cascade for surface density variance. Here we show numerically and analytically that (i) and (ii) do not imply a forward cascade of surface KE (through the advection term in the KE budget). On the contrary, advection by the geostrophic flow primarily induces an inverse cascade of surface KE on a large range of scales. This spectral flux is locally compensated by a KE source that is related to surface frontogenesis. The subsequent spectral budget resembles those exhibited by more complex systems (primitive equations or Boussinesq models) and observations, which strengthens the relevance of SQG for the description of ocean/atmosphere dynamics near vertical boundaries. The main weakness of SQG however is in the small-scale range (scales smaller than 20-30 km in the ocean) where it poorly represents the forward KE cascade observed in non-QG numerical simulations. © 2008 Cambridge University Press.
    Print ISSN: 0022-1120
    Digitale ISSN: 1469-7645
    Thema: Maschinenbau , Physik
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Publikationsdatum: 2017-05-24
    Beschreibung: The statistical properties of turbulent fluids depend on how local the energy transfers among scales are, i.e. whether the energy transfer at some given scale is due to the eddies at that particular scale, or to eddies at larger (non-local) scale. This locality in the energy transfers may have consequences for the relative dispersion of passive particles. In this paper, we consider a class of generalized two-dimensional flows (produced by the so-called α-turbulence models), theoretically possessing different properties in terms of locality of energy transfers. It encompasses the standard barotropic quasi-geostrophic (QG) and the surface quasi-geostrophic (SQG) models as limiting cases. The relative dispersion statistics are examined, both as a function of time and as a function of scale, and compared to predictions based on phenomenological arguments assuming the locality of the cascade. We find that the dispersion statistics follow the predicted values from local theories, as long as the parameter is α small enough (dynamics close to that of the SQG model), for sufficiently small initial pair separations. In contrast, non-local dispersion is observed for the QG model, a robust result when looking at relative displacement probability distributions. However, we point out that spectral energy transfers do have a non-local contribution for models with different values of α, including the SQG case. This indicates that locality/non-locality of the turbulent cascade may not always imply locality/non-locality in the relative dispersion of particles and that the self-similar nature of the turbulent cascade is more appropriate for determining the relative dispersion locality. © 2017 Cambridge University Press.
    Print ISSN: 0022-1120
    Digitale ISSN: 1469-7645
    Thema: Maschinenbau , Physik
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...