ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • 1990-1994  (2)
  • 1985-1989  (4)
Sammlung
Verlag/Herausgeber
Erscheinungszeitraum
Jahr
  • 1
    Digitale Medien
    Digitale Medien
    Springer
    Meteorology and atmospheric physics 49 (1992), S. 187-207 
    ISSN: 1436-5065
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Geographie , Physik
    Notizen: Summary This paper is concerned with the simulation of deep convection for the CCOPE 19 July 1981 case study. Clark's three-dimensional (3D) cloud model modified to use the bulk water parameterization scheme of Lin et al. has been used in the simulation of the CCOPE 19 July 1981 case in coarse mesh, fine mesh, and interactive grid nested schemes, respectively. Comparisons with observations show this 3D grid nested cloud model is capable of both capturing both the dynamic and microphysical properties of the cloud. In the nested grid fine mesh model simulation, the timing and mode of cloud growth, the diameter of liquid cloud, the cloud top rate of rise, the maximum cloud water content, and the altitude of first radar echo are consistent with observations. The simulated thunderstorm begins to dissipate, after precipitation reaches the ground as indicated by the decreasing values of maximum updraft and maximum liquid cloud water content, and ends as a precipitating anvil as was observed in the actual thunderstorm. The model precipitation developed through ice phase processes consistent with the analysis of observations from the actual thunderstorm. Qualitative comparisons of the actual radar RHIs with simulated reflectively patterns from the 3D model show remarkable similarity, especially after the mature stage is reached. Features of the actual RHI patterns, such as the weak echo region, upshear anvil bulge, strong upwind reflectivity gradients, and the upwind outflow region near the surface are reproduced in the simulation. Comparison of the actual radar PPIs with horizontal cross sections of radar reflectivity simulated by the 3D model, however, show modest differences in the storm size with the 3D simulated thunderstorm being 1–2 km longer in the west-east direction than the actual thunderstorm. The model-predicted maximum updraft speed is smaller than the 2D model-predicted maximum updraft speed, but still greater than what was observed. Comparisons among the nested grid fine mesh model (MB), nested grid coarse mesh model (MA), fine mesh model (FM), coarse mesh model (CM), and 2D model results previously published show that the nested grid fine mesh model (MB) gives the best simulation result. The various 3D model simulation results are generally similar to each other except for the difference in the domain maximum values. The domain maximum values in the fine mesh models (MB and FM) are generally higher than the coarse mesh models as a result of averaging over a smaller area.
    Materialart: Digitale Medien
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Digitale Medien
    Digitale Medien
    Springer
    Medical & biological engineering & computing 26 (1988), S. 628-632 
    ISSN: 1741-0444
    Schlagwort(e): Airway model ; In vivo air temperature ; Respiratory convective heat transfer ; Respiratory heat loss
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Biologie , Chemie und Pharmazie , Medizin
    Notizen: Abstract Airway cooling and drying has been proposed as a mechanism of exercise-induced asthma. Of interest in understanding the role of respiratory heat loss are the airway zones enduring the principal cooling and drying stresses. We have compared the axial rise in air temperature in the upper respiratory tract of asthmatics with that occurring in a laminar airflow steady-state model of convective heat transfer. The latter allowed an assessment of the contribution of airway geometry to the overall air warming process and gave some indication of the likely in vivo air temperature during hyperventilation, which due to the nature of our patients we could not measure directly. In vivo measurements were performed during a fibre-optic bronchoscopy. Eleven patients (67 years ±0·76) inhaled ambient air (23·2°C) and cold air (−17·5°C) nasally at a ventilation of 10 l min−1. During cold air inhalation the air temperature of the pharynx was 32·7°C (1·0) and at the third-generation bronchi 37°C (0·5), whereas with ambient air these were 35·8°C (0·8) and 37·7°C (0·6), respectively. For the same inspired ambient air condition the corresponding air temperatures in the thermodynamic model were approximately 27°C and 32°C. The axial rise in air temperature in both the model and in vivo state were characterised by a rapid early warming phase regardless of airflow rate. We conclude that the region proximal to the pharynx will endure the most severe cooling during a hyperventilation challenge.
    Materialart: Digitale Medien
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Publikationsdatum: 1992-01-01
    Print ISSN: 0177-7971
    Digitale ISSN: 1436-5065
    Thema: Geographie , Physik
    Publiziert von Springer
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    Publikationsdatum: 1986-12-01
    Print ISSN: 0733-3021
    Digitale ISSN: 2163-5366
    Thema: Geologie und Paläontologie , Physik
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    facet.materialart.
    Unbekannt
    In:  Other Sources
    Publikationsdatum: 2019-06-28
    Beschreibung: The effects on microbursts of precipitation loading, and cooling of the downdraft due to graupel/hail melting and rain evaporation, were studied, using numerical models. The results for the microburst index indicate a low value for the weak microburst and a higher value for the strong microburst. The relative magnitude of the various terms indicate the importance of the microphysical processes. For the dry microburst the evaporation and loading effects are comparable (1.56 and 1.75 respectively) but 5 to 6 times the magnitude of the melting effect. For a wet, tropical microburst, the loading and melting terms are most important. The intermediate Denver case shows loading as the largest term, followed by evaporation and melting.
    Schlagwort(e): METEOROLOGY AND CLIMATOLOGY
    Materialart: Deutscher Wetterdienst, Annals from the German Meteorological Society. No. 25: 10th International Cloud Physics Conference Preprints, Volume 2; p 675-677
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 6
    Publikationsdatum: 2019-07-12
    Beschreibung: Several atmospheric soundings have been used as initial conditions in the Institute of Atmospheric Sciences' two-dimensional, time-dependent cloud model and resulted in a wide range of microbursts, some very wet and some nearly dry. Observations confirm the occurrence of at least three of the microbursts and give good comparisons of the intensity, upper-level convergence, downdraft, and other microburst characteristics. The effects of the liquid and ice microphysics are examined quantitatively. Precipitation loading, graupel/hail melting, and rain evaporation are all shown to be important. Evaporation and milting are, in general, the most dominant effects.
    Schlagwort(e): METEOROLOGY AND CLIMATOLOGY
    Materialart: Atmospheric Research (ISSN 0169-8095); 24; 343-357
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...