ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • FLUID MECHANICS AND HEAT TRANSFER
  • ddc:330
  • 1995-1999  (1)
  • 1
    Publikationsdatum: 2013-08-31
    Beschreibung: The critical state of vortex cores downstream of vortex breakdown has been studied. Base vortical flows were computed using the Reynolds-averaged, axisymmetric Navier-Stokes equations. Standard K - epsilon, RNG and second-order Reynolds stress models were employed. Results indicate that the return to supercriticality is highly dependent on the turbulence model. The K - epsilon model predicted a rapid return of the vortex to supercritical conditions, the location of which showed little sensitivity to changes in the swirl ratio. The Reynolds stress model predicted that the vortex remains subcritical to the end of the domain for each of the swirl ratios employed, and provided results in qualitative agreement with experimental work. The RNG model produced intermediate results, with a downstream movement in the critical location with increasing swirl. Calculations for which area reductions were introduced at the exit in a subcritical flow were also performed using the Reynolds stress model. The structure of the resulting recirculation zone was altered significantly. However, when area reductions were employed within supercritical flows as predicted using the two-equation models, no significant influence on the recirculation zone was noted.
    Schlagwort(e): FLUID MECHANICS AND HEAT TRANSFER
    Materialart: NASA. Lewis Research Center, The Sixth Annual Thermal and Fluids Analysis Workshop; p 163-173
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...