ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • 2010-2014  (2)
Sammlung
Erscheinungszeitraum
Jahr
  • 1
    Publikationsdatum: 2014-12-05
    Beschreibung: We investigate charge generation as a function of stress in fine-grained gabbro for both nominally dry samples and samples fully saturated with electrically conductive brine fluids similar to those observed in active earthquake fault zones. These experiments address a number of proposed and reported electrical precursory and coseismic phenomena associated with earthquakes. Compressive load was applied to one end of the sample in repetitive cycles using a pair of precision steel platens driven by a large hydraulic press. The samples were tested by cycling between constant low stress and constant high stress values with a 200-s periodicity. Net charge transport between the stressed and unstressed sample ends was monitored with a picoammeter. For the nominally dry samples, stress-stimulated current (SSC) transients on the order of 50–400 pA peak-to-peak were observed with a decay time constant ~10 s during stress loading and unloading. Under constant compressive loads of ~22 MPa, small negative polarity SSC of ~15 pA magnitude was observed as an offset from the baseline current at low load (5 MPa) conditions. For the fluid-saturated samples, neither transients nor SSCs were observed as a function of stress when the load was cycled, an observation that is consistent with more rapid internal self-discharge due to higher electrical conductivity of the sample. Because the Earth’s crust is fluid saturated, observation of significant electrical charge buildup is not expected during the observed slow stress accumulation prior to earthquakes or during any slow precursory stress release that may occur in the region of earthquake nucleation. However, observation of coseismic charge generation due to electrokinetic, triboelectric, and other processes may occur during earthquake stress drops, surface rupture, and seismic-wave arrivals from dynamic rupture.
    Print ISSN: 0037-1106
    Digitale ISSN: 1943-3573
    Thema: Geologie und Paläontologie , Physik
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Publikationsdatum: 2014-11-18
    Beschreibung: We investigate charge generation as a function of stress in fine-grained gabbro for both nominally dry samples and samples fully saturated with electrically conductive brine fluids similar to those observed in active earthquake fault zones. These experiments address a number of proposed and reported electrical precursory and coseismic phenomena associated with earthquakes. Compressive load was applied to one end of the sample in repetitive cycles using a pair of precision steel platens driven by a large hydraulic press. The samples were tested by cycling between constant low stress and constant high stress values with a 200-s periodicity. Net charge transport between the stressed and unstressed sample ends was monitored with a picoammeter. For the nominally dry samples, stress-stimulated current (SSC) transients on the order of 50-400 pA peak-to-peak were observed with a decay time constant approximately 10 s during stress loading and unloading. Under constant compressive loads of approximately 22 MPa, small negative polarity SSC of approximately 15 pA magnitude was observed as an offset from the baseline current at low load (5 MPa) conditions. For the fluid-saturated samples, neither transients nor SSCs were observed as a function of stress when the load was cycled, an observation that is consistent with more rapid internal self-discharge due to higher electrical conductivity of the sample. Because the Earth"s crust is fluid saturated, observation of significant electrical charge buildup is not expected during the observed slow stress accumulation prior to earthquakes or during any slow precursory stress release that may occur in the region of earthquake nucleation. However, observation of coseismic charge generation due to electrokinetic, triboelectric, and other processes may occur during earthquake stress drops, surface rupture, and seismic-wave arrivals from dynamic rupture.
    Print ISSN: 0037-1106
    Digitale ISSN: 1943-3573
    Thema: Geologie und Paläontologie , Physik
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...