ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • 2015-2019  (3)
  • 1
    Publikationsdatum: 2019-07-13
    Beschreibung: Chondrite parent bodies are among the first large bodies to have formed in the early Solar System, and have since remained almost chemically unchanged having not grown large enough or quickly enough to undergo differentiation. Their major nonvolatile elements bear a close resemblance to the solar photosphere. Previous work has concluded that CM chondrites fall into at least four distinct space exposure age groups (0.1 megaannus, 0.2 megaannus, 0.6 megaannus and 2.0 megaannus), but the meaning of these groupings is unclear. It is possible that these meteorites came from different parent bodies which broke up at different times, or instead came from the same parent body which underwent multiple break-up events, or a combination of these scenarios.
    Schlagwort(e): Lunar and Planetary Science and Exploration
    Materialart: JSC-CN-32668 , Lunar and Planetary Science Conference; Mar 16, 2015 - Mar 20, 2015; The Woodlands, TX; United States
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Publikationsdatum: 2019-08-13
    Beschreibung: Chondrite parent bodies are among the first large bodies to have formed in the early Solar System, and have since remained almost chemically unchanged having not grown large enough or quickly enough to undergo differentiation. Their major nonvolatile elements bear a close resemblance to the solar photosphere. Previous work has concluded that CM chondrites fall into at least four distinct space exposure age groups (0.1 Ma, 0.2 Ma, 0.6 Ma and 〉2.0 Ma), but the meaning of these groupings is unclear. It is possible that these meteorites came from different parent bodies which broke up at different times, or instead came from the same parent body which underwent multiple break-up events, or a combination of these scenarios.
    Schlagwort(e): Lunar and Planetary Science and Exploration
    Materialart: JSC-CN-32758 , Lunar and Planetary Science Conference; Mar 16, 2015 - Mar 20, 2015; The Woodlands, TX; United States
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Publikationsdatum: 2019-07-13
    Beschreibung: The CMs are the most commonly falling C chondrites, and therefore may be a major component of C-class asteroids, the targets of several current and future space missions. Previous work [1] has concluded that CM chondrites fall into at least four distinct cosmic ray space exposure (CRE) age groups (0.1 million years, 0.2 million years, 0.6 million years and greater than 2.0 million years), an unusually large number, but the meaning of these groupings is unclear. It is possible that these meteorites came from different parent bodies which broke up at different times, or instead came from the same parent body which underwent multiple break-up events, or a combination of these scenarios, or something else entirely. The objective of this study is to investigate the diversity of lithologies which make up CM chondrites, in order to determine whether the different exposure ages correspond to specific, different CM lithologies, which permit us to constrain the history of the CM parent body(ies). We have already reported significant petrographic differences among CM chondrites [2-4]. We report here our new results.
    Schlagwort(e): Lunar and Planetary Science and Exploration; Geophysics
    Materialart: JSC-CN-34415 , Symposium on Antarctic Meteorites; Nov 16, 2015 - Nov 17, 2015; Tokyo; Japan
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...