ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    Publikationsdatum: 2018-05-05
    Beschreibung: The Greenland Ice Sheet has been, and will continue, losing mass at an accelerating rate. The influence of this anomalous meltwater discharge on the regional and large-scale ocean could be considerable but remains poorly understood. This uncertainty is in part a consequence of challenges in observing water mass transformation and meltwater spreading in coastal Greenland. Here we use tracer observations that enable unprecedented quantification of the export, mixing, and vertical distribution of meltwaters leaving one of Greenland's major glacial fjords. We find that the primarily subsurface meltwater input results in the upwelling of the deep fjord waters and an export of a meltwater/deepwater mixture that is 30 times larger than the initial meltwater release. Using these tracer data, the vertical structure of Greenland's summer meltwater export is defined for the first time showing that half the meltwater export occurs below 65 m. ©2018. American Geophysical Union. All Rights Reserved.
    Print ISSN: 0094-8276
    Digitale ISSN: 1944-8007
    Thema: Geologie und Paläontologie , Physik
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Publikationsdatum: 2017-09-04
    Print ISSN: 0260-3055
    Digitale ISSN: 1727-5644
    Thema: Geographie , Geologie und Paläontologie
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
  • 4
    Publikationsdatum: 2018-12-10
    Beschreibung: The discharge of nutrient-rich meltwater from the Greenland Ice Sheet has emerged as a potentially important contributor to regional marine primary production and nutrient cycling. While significant, this direct nutrient input by the ice sheet may be secondary to the upwelling of deep-ocean-sourced nutrients driven by the release of meltwater at depth in glacial fjords. Here, we present a comprehensive suite of micro- and macronutrient observations collected in Sermilik Fjord at the margin of Helheim, one of Greenland’s largest glaciers, and quantitatively decompose glacial and ocean contributions to fjord dissolved nutrient inventories. We show that the substantial enrichment in nitrate, phosphate and silicate observed in the upper 250 m of the glacial fjord is the result of upwelling of warm subtropical waters present at depth throughout the fjord. These nutrient-enriched fjord waters are subsequently exported subsurface to the continental shelf. The upwelled nutrient transport within Sermilik rivals exports by the largest Arctic rivers and the ice sheet as a whole, suggesting that glacier-induced pumping of deep nutrients may constitute a major source of macronutrients to the surrounding coastal ocean. The importance of this mechanism is likely to grow given projected increases in surface melt of the ice sheet. © 2018, The Author(s), under exclusive licence to Springer Nature Limited.
    Print ISSN: 1752-0894
    Digitale ISSN: 1752-0908
    Thema: Geologie und Paläontologie
    Publiziert von Springer Nature
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    Publikationsdatum: 2015-09-28
    Print ISSN: 0094-8276
    Digitale ISSN: 1944-8007
    Thema: Geologie und Paläontologie , Physik
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 6
    Publikationsdatum: 2022-01-31
    Beschreibung: The OceanGliders program started in 2016 to support active coordination and enhancement of global glider activity. OceanGliders contributes to the international efforts of the Global Ocean Observation System (GOOS) for Climate, Ocean Health, and Operational Services. It brings together marine scientists and engineers operating gliders around the world: (1) to observe the long-term physical, biogeochemical, and biological ocean processes and phenomena that are relevant for societal applications; and, (2) to contribute to the GOOS through real-time and delayed mode data dissemination. The OceanGliders program is distributed across national and regional observing systems and significantly contributes to integrated, multi-scale and multi-platform sampling strategies. OceanGliders shares best practices, requirements, and scientific knowledge needed for glider operations, data collection and analysis. It also monitors global glider activity and supports the dissemination of glider data through regional and global databases, in real-time and delayed modes, facilitating data access to the wider community. OceanGliders currently supports national, regional and global initiatives to maintain and expand the capabilities and application of gliders to meet key global challenges such as improved measurement of ocean boundary currents, water transformation and storm forecast.
    Materialart: Article , PeerReviewed
    Format: text
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 7
    Publikationsdatum: 2022-05-25
    Beschreibung: Author Posting. © American Geophysical Union, 2018. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 45 (2018): 4163-4170, doi:10.1029/2018GL077000.
    Beschreibung: The Greenland Ice Sheet has been, and will continue, losing mass at an accelerating rate. The influence of this anomalous meltwater discharge on the regional and large‐scale ocean could be considerable but remains poorly understood. This uncertainty is in part a consequence of challenges in observing water mass transformation and meltwater spreading in coastal Greenland. Here we use tracer observations that enable unprecedented quantification of the export, mixing, and vertical distribution of meltwaters leaving one of Greenland's major glacial fjords. We find that the primarily subsurface meltwater input results in the upwelling of the deep fjord waters and an export of a meltwater/deepwater mixture that is 30 times larger than the initial meltwater release. Using these tracer data, the vertical structure of Greenland's summer meltwater export is defined for the first time showing that half the meltwater export occurs below 65 m.
    Beschreibung: National Science Foundation Grant Number: OCE-1536856
    Beschreibung: 2018-11-05
    Schlagwort(e): Greenland ; Ocean-glacier interactions ; Fjord circulation ; Meltwater ; Noble gas ; Overturning
    Repository-Name: Woods Hole Open Access Server
    Materialart: Article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 8
    Publikationsdatum: 2022-05-25
    Beschreibung: Author Posting. © American Geophysical Union, 2015. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 42 (2015): 7705–7713, doi:10.1002/2015GL065003.
    Beschreibung: We present the first noble gas observations in a proglacial fjord in Greenland, providing an unprecedented view of surface and submarine melt pathways into the ocean. Using Optimum Multiparameter Analysis, noble gas concentrations remove large uncertainties inherent in previous studies of meltwater in Greenland fjords. We find glacially modified waters with submarine melt concentrations up to 0.66 ± 0.09% and runoff 3.9 ± 0.29%. Radiogenic enrichment of Helium enables identification of ice sheet near-bed melt (0.48 ± 0.08%). We identify distinct regions of meltwater export reflecting heterogeneous melt processes: a surface layer of both runoff and submarine melt and an intermediate layer composed primarily of submarine melt. Intermediate ocean waters carry the majority of heat to the fjords' glaciers, and warmer deep waters are isolated from the ice edge. The average entrainment ratio implies that ocean water masses are upwelled at a rate 30 times the combined glacial meltwater volume flux.
    Beschreibung: We gratefully acknowledge funding from WHOI's Ocean and Climate Change Institute, the Doherty Postdoctoral Scholarship, and ship time from the Advanced Climate Dynamics Summer School (SiU grant NNA-2012/10151).
    Beschreibung: 2016-03-30
    Schlagwort(e): Glacial melt ; Noble gases ; Tracers ; Meltwater ; Greenland ; Fjord
    Repository-Name: Woods Hole Open Access Server
    Materialart: Article
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 9
    Publikationsdatum: 2022-05-25
    Beschreibung: Author Posting. © American Geophysical Union, 2016. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Oceans 121 (2016): 4026–4040, doi:10.1002/2015JC011501.
    Beschreibung: The polar front in the North Atlantic is bound to the ridge between Iceland and the Faroe Islands, where about one-half of the northward transport of warm Atlantic Water into the Nordic Seas occurs, as well as about one sixth of the equatorward dense overflow. We find a low salinity water mass at the surface of the Iceland-Faroe Front (IFF), which in wintertime subducts along outcropping isopycnals and is found in much modified form on the Atlantic side of the Iceland-Faroe Ridge (IFR) crest. The features found on the Atlantic side of the crest at depth have temperature and salinity characteristics which are clearly traceable to the surface outcrop of the IFF. The presence of coherent low salinity layers on the Atlantic side of the IFR crest has not been previously reported. Warm waters above the IFR primarily feed the Faroe Current, and injection of a low salinity water mass may play an early role in the water mass transformation taking place in the Nordic Seas. The seasonality of the intrusive features suggests a link between winter convection, mixed layer instability and deep frontal subduction. These low salinity anomalies (as well as a low oxygen water mass from the Iceland Basin) can be used as tracers of the intermediate circulation over the IFR.
    Beschreibung: National Science Foundation OCE Division . Grant Numbers: OCE-1029344 , OCE-0550584
    Beschreibung: 2016-12-12
    Schlagwort(e): Fronts ; Subduction ; Iceland Faroe Front ; Iceland Faroe Ridge ; Gliders
    Repository-Name: Woods Hole Open Access Server
    Materialart: Article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 10
    Publikationsdatum: 2022-05-26
    Beschreibung: © The Author(s), 2017. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Annals of Glaciology 58 (2017): 107-117, doi:10.1017/aog.2017.19.
    Beschreibung: Jakobshavn Isbræ, which terminates in Ilulissat Icefjord, has undergone rapid retreat and is currently the largest contributor to ice-sheet mass loss among Greenland’s marine terminating glaciers. Accelerating mass loss is increasing fresh water discharge to the ocean, which can feed back on ice melt, impact marine ecosystems and potentially modify regional and larger scale ocean circulation. Here we present hydrographic observations, including inert geochemical tracers, that allow the first quantitative description of the glacially-modified waters exported from the Jakobshavn/Icefjord system. Observations within the fjord suggest a deep-reaching overturning cell driven by glacial buoyancy forcing. Modified waters containing submarine meltwater (up to 2.5 ± 0.12%), subglacial discharge (up to 6 ± 0.37%) and large portions of entrained ocean waters are seen to exit the fjord and flow north. The exported meltwaters form a buoyant coastal gravity current reaching to 100 m depth and extending 10 km offshore.
    Beschreibung: We gratefully acknowledge support from WHOI’s Ocean and Climate Change Institute, the WHOI Doherty Postdoctoral Scholarship, the US National Science Foundation grant NSF OCE-1536856, and the leaders and participants of the Advanced Climate Dynamics Summer School (SiU grant NNA-2012/10151). Ship-based CTD data are freely available from the NOAA National Centers for Environmental Information, discoverable with Accession Number 0162649. Expendable CTD data are included in the Supplementary Material.
    Schlagwort(e): Glacier discharge ; Icebergs ; Ice/ocean interactions ; Meltwater chemistry ; Polar and subpolar oceans
    Repository-Name: Woods Hole Open Access Server
    Materialart: Article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...