ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    Publikationsdatum: 2007-09-01
    Print ISSN: 0895-0695
    Digitale ISSN: 1938-2057
    Thema: Geologie und Paläontologie
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Publikationsdatum: 2005-07-01
    Beschreibung: In the monitoring of earthquakes and nuclear explosions using a sparse worldwide network of seismic stations, it is frequently necessary to make reliable location estimates using a single seismic array. It is also desirable to screen out routine industrial explosions automatically in order that analyst resources are not wasted upon detections which can, with a high level of confidence, be associated with such a source. The Kovdor mine on the Kola Peninsula of NW Russia is the site of frequent industrial blasts which are well recorded by the ARCES regional seismic array at a distance of approximately 300 km. We describe here an automatic procedure for identifying signals which are likely to result from blasts at the Kovdor mine and, wherever possible, for obtaining single array locations for such events. Carefully calibrated processing parameters were chosen using measurements from confirmed events at the mine over a one-year period for which the operators supplied Ground Truth information. Phase arrival times are estimated using an autoregressive method and slowness and azimuth are estimated using broadband f-k analysis in fixed frequency bands and time-windows fixed relative to the initial P-onset time. We demonstrate the improvement to slowness estimates resulting from the use of fixed frequency bands. Events can be located using a single array if, in addition to the P-phase, at least one secondary phase is found with both an acceptable slowness estimate and valid onset-time estimate. We evaluate the on-line system over a twelve month period; every event known to have occured at the mine is detected by the process and 32 out of 53 confirmed events were located automatically. The remaining events were classified as "very likely" Kovdor events and were subsequently located by an analyst. The false alarm rate is low; only 84 very likely Kovdor events were identified during the whole of 2003 and none of these were subsequently located at a large distance from the mine. The location accuracy achieved automatically by the single-array process is remarkably good, and is comparable to that obtained interactively by an experienced analyst using two-array observations. The greatest problem encountered in the single array location procedure is the difficulty in determining arrival times for secondary phases, given the weak Sn phase and the complexity of the P-coda. The method described here could be applied to a wide range of locations and sources for which the monitoring of seismic activity is desirable. The effectiveness will depend upon the distance between source and receiver, the nature of the seismic sources and the level of regional seismicity. © Springer Science + Business Media, Inc. 2005.
    Print ISSN: 1383-4649
    Digitale ISSN: 1573-157X
    Thema: Geologie und Paläontologie , Physik
    Publiziert von Springer
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    facet.materialart.
    Unbekannt
    Publikationsdatum: 2019-11-04
    Beschreibung: The Intelligent Monitoring Systern (IMS) currently provides for joint processing of data from six arrays located in Northern and Central Europe. From experience with analyst review of events automatically defined by the IMS, we bave realized that the quality of the automatic event locations can be significantly improved if the event intervals are reprocessed with signal processing pararneters tuned to phases from events in the given region. The tuned processing parameters are obtained from off line analysis of events located in the region of interest. The primary goal of such intelligent post processing is to provide event definitions of a quality that minimizes the need for subsequent manual analysis. The first step in this post processing is to subdivide the arca to be monitored in order to identify sites of interest. Clearly, calibration will be the easiest and potential savings in manpower are the largest for areas of high, recurring seismicity. We bave identified 8 mining sites in Fennoscandia/NW Russia and noted that 65.6% of the events of ML 〉 2.0 in this region can be associated with one of these sites. This result is based on 1 year and a half of data. The second step is to refine the phase arrival and azimuth estimates using frequency filters and processing parameters that are tuned to the initial event location provided by the IMS. In this study, we have analyzed a set of 52 mining explosions from the Khibiny Massif mining area in the Kola peninsula of Russia. Very accurate locations of these events bave been provided by the seismologists from the Kola Regional Seismology Centre. Using an autoregressive likelihood technique we have been able to estimate onset times to an accuracy (standard deviation) of about 0.05 s for P phases and 0.15 0.20 s for S phases. Using fixed frequency bands, azimuth can be estimated to an accuracy (one standard deviation) of 0.9 degrees for the ARCESS array and 3 4 degrees for the small array recently established near Apatity on the Kola peninsula. The third step in the post processing is a relocation of the event, using refined arrivai times and recomputed azimuths from broad band flk analysis. By introducing region specific travel time corrections, a median error of 1.4 km from the reported location has been obtained. This should be compared to the median error of 10.8 km for the automatie IMS processing for these events. This improvement in location accuracy clearly demonstrates the usefulness of the intelligent post processing approach.
    Beschreibung: JCR Journal
    Beschreibung: open
    Schlagwort(e): seismology ; signal processing ; onset time ; event location ; 05. General::05.09. Miscellaneous::05.09.99. General or miscellaneous
    Repository-Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Materialart: article
    Format: 3879370 bytes
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    Publikationsdatum: 2019-11-04
    Beschreibung: The UN Conference on Disarmament's Group of Scientific Experts (GSE) was established in 1976 to consider international co operative measures to detect and identify seismic events. Over the years, the GSE has developed and tested several concepts for an International Seismic Monitoring System (ISMS) for the purpose of assisting in the verification of a potential comprehensive test ban treaty. The GSE is now planning its third global technical test. (GSETT 3) in order to test new and revisled concepts for an ISMS. GSETT 3 wili be an unprecedented global effort to conduct an operationally realistic test of rapid collection, distribution and processing of seismie data. A global network of seismograph stations will provide data to an International Data Center, where the data will be processed an results made available to participants. The full scaIe phase of GSETT 3 is scheduled to begin in January 1995.
    Beschreibung: JCR Journal
    Beschreibung: open
    Schlagwort(e): seismology ; earthquakes ; nuclear explosion ; seismic network ; seismic monitoring ; nuclear test ban ; 05. General::05.09. Miscellaneous::05.09.99. General or miscellaneous
    Repository-Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Materialart: article
    Format: 1602811 bytes
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    Publikationsdatum: 2020-02-12
    Beschreibung: A fortuitous sequence of closely spaced earthquakes in the Rana region of northern Norway, during 2005, has provided an ideal natural laboratory for investigating event detectability using waveform correlation over networks and arrays at regional distances. A small number of events between magnitude 2.0 and 3.5 were recorded with a high SNR by the Fennoscandian IMS seismic arrays at distances over 600 km and three of these events, including the largest on 24 June, displayed remarkable waveform similarity even at relatively high frequencies. In an effort to detect occurrences of smaller earthquakes in the immediate geographical vicinity of the 24 June event, a multi-channel correlation detector for the NORSAR array was run for the whole calender year 2005 using the signal from the master event as a template. A total of 32 detections were made and all but 2 of these coincided with independent correlation detections using the other Nordic IMS array stations; very few correspond to signals detectable using traditional energy detectors. Permanent and temporary stations of the Norwegian National Seismic Network (NNSN) at far closer epicentral distances have confirmed that all but one of the correlation detections at NORSAR in fact correspond to real events. The closest stations at distances of approximately 10 km can confirm that the smallest of these events have magnitudes down to 0.5 which represents a detection threshold reduction of over 1.5 for the large-aperture NORSAR array and over 1.0 for the almost equidistant regional ARCES array. The incompleteness of the local network recordings precludes a comprehensive double-difference location for the full set of events. However, stable double-difference relative locations can be obtained for eight of the events using only the Lg phase recorded at the array stations. All events appear to be separated by less than 0.5 km. Clear peaks were observed in the NORSAR correlation coefficient traces during the coda of some of the larger events; the local stations confirm that these are in fact aftershocks exhibiting very similar waveforms to the main events. Many of the more marginal correlation detections are not made when the calculations are repeated using shorter signal segments, fewer sensors or more distant stations. We demonstrate in addition how these almost repeating seismic sources have been exploited to detect and measure timing anomalies at individual sites within the arrays and network.
    Schlagwort(e): 550 - Earth sciences
    Materialart: info:eu-repo/semantics/article
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...