ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
Sammlung
Erscheinungszeitraum
  • 1
    facet.materialart.
    Unbekannt
    Copernicus Publications
    In:  EPIC3Earth System Science Data Discussions, Copernicus Publications, 7(2), pp. 521-610, ISSN: 1866-3591
    Publikationsdatum: 2018-02-16
    Repository-Name: EPIC Alfred Wegener Institut
    Materialart: Article , notRev
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    facet.materialart.
    Unbekannt
    Copernicus Publications
    In:  EPIC3Earth System Science Data, Copernicus Publications, 7(1), pp. 47-85, ISSN: 1866-3516
    Publikationsdatum: 2019-10-04
    Repository-Name: EPIC Alfred Wegener Institut
    Materialart: Article , isiRev , info:eu-repo/semantics/article
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Publikationsdatum: 2022-05-26
    Beschreibung: © The Author(s), 2015. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Earth System Science Data 7 (2015): 47-85, doi:10.5194/essd-7-47-2015.
    Beschreibung: Accurate assessment of anthropogenic carbon dioxide (CO2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere is important to better understand the global carbon cycle, support the development of climate policies, and project future climate change. Here we describe data sets and a methodology to quantify all major components of the global carbon budget, including their uncertainties, based on the combination of a range of data, algorithms, statistics, and model estimates and their interpretation by a broad scientific community. We discuss changes compared to previous estimates, consistency within and among components, alongside methodology and data limitations. CO2 emissions from fossil fuel combustion and cement production (EFF) are based on energy statistics and cement production data, respectively, while emissions from land-use change (ELUC), mainly deforestation, are based on combined evidence from land-cover-change data, fire activity associated with deforestation, and models. The global atmospheric CO2 concentration is measured directly and its rate of growth (GATM) is computed from the annual changes in concentration. The mean ocean CO2 sink (SOCEAN) is based on observations from the 1990s, while the annual anomalies and trends are estimated with ocean models. The variability in SOCEAN is evaluated with data products based on surveys of ocean CO2 measurements. The global residual terrestrial CO2 sink (SLAND) is estimated by the difference of the other terms of the global carbon budget and compared to results of independent dynamic global vegetation models forced by observed climate, CO2, and land-cover-change (some including nitrogen–carbon interactions). We compare the mean land and ocean fluxes and their variability to estimates from three atmospheric inverse methods for three broad latitude bands. All uncertainties are reported as ±1σ, reflecting the current capacity to characterise the annual estimates of each component of the global carbon budget. For the last decade available (2004–2013), EFF was 8.9 ± 0.4 GtC yr−1, ELUC 0.9 ± 0.5 GtC yr−1, GATM 4.3 ± 0.1 GtC yr−1, SOCEAN 2.6 ± 0.5 GtC yr−1, and SLAND 2.9 ± 0.8 GtC yr−1. For year 2013 alone, EFF grew to 9.9 ± 0.5 GtC yr−1, 2.3% above 2012, continuing the growth trend in these emissions, ELUC was 0.9 ± 0.5 GtC yr−1, GATM was 5.4 ± 0.2 GtC yr−1, SOCEAN was 2.9 ± 0.5 GtC yr−1, and SLAND was 2.5 ± 0.9 GtC yr−1. GATM was high in 2013, reflecting a steady increase in EFF and smaller and opposite changes between SOCEAN and SLAND compared to the past decade (2004–2013). The global atmospheric CO2 concentration reached 395.31 ± 0.10 ppm averaged over 2013. We estimate that EFF will increase by 2.5% (1.3–3.5%) to 10.1 ± 0.6 GtC in 2014 (37.0 ± 2.2 GtCO2 yr−1), 65% above emissions in 1990, based on projections of world gross domestic product and recent changes in the carbon intensity of the global economy. From this projection of EFF and assumed constant ELUC for 2014, cumulative emissions of CO2 will reach about 545 ± 55 GtC (2000 ± 200 GtCO2) for 1870–2014, about 75% from EFF and 25% from ELUC. This paper documents changes in the methods and data sets used in this new carbon budget compared with previous publications of this living data set (Le Quéré et al., 2013, 2014). All observations presented here can be downloaded from the Carbon Dioxide Information Analysis Center (doi:10.3334/CDIAC/GCP_2014).
    Beschreibung: NERC provided funding to C. Le Quéré, R. Moriarty, and the GCP though their International Opportunities Fund specifically to support this publication (NE/103002X/1), and to U. Schuster through UKOARP (NE/H017046/1). G. P. Peters and R. M. Andrews were supported by the Norwegian Research Council (236296). T. A. Boden was supported by US Department of Energy, Office of Science, Biological and Environmental Research (BER) programmes under US Department of Energy contract DEAC05- 00OR22725. Y. Bozec was supported by Region Bretagne, CG29, and INSU (LEFE/MERMEX) for CARBORHONE cruises. J. G. Canadell and M. R. Raupach were supported by the Australian Climate Change Science Programme. M. Hoppema received ICOSD funding through the German Federal Ministry of Education and Research (BMBF) to the AWI (01 LK 1224I). J. I. House was supported by a Leverhulme Early Career Fellowship. A. K. Jain was supported by the US National Science Foundation (NSF AGS 12-43071) the US Department of Energy, Office of Science, and BER programmes (DOE DE-SC0006706) and the NASA LCLUC programme (NASA NNX14AD94G). E. Kato was supported by the Environment Research and Technology Development Fund (S-10) of the Ministry of Environment of Japan. C. Koven was supported by the Director, Office of Science, Office of Biological and Environmental Research, of the US Department of Energy under contract no. DE-AC02-05CH11231 as part of their Regional and Global Climate Modeling Program. I. D. Lima was supported by the U.S. National Science Foundation (NSF AGS-1048827). N. Metzl was supported by Institut National des Sciences de l’Univers (INSU) and Institut Paul Emile Victor (IPEV) for OISO cruises. A. Olsen was supported by the Centre for Climate Dynamics at the Bjerknes Centre for Climate Research. J. E. Salisbury was supported by grants from NOAA/NASA. T. Steinhoff was supported by ICOS-D (BMBF FK 01LK1101C). B. D. Stocker was supported by the Swiss National Science Foundation and FP7 funding through project EMBRACE (282672). A. J. Sutton was supported by NOAA. T. Takahashi was supported by grants from NOAA and the Comer Education and Science Foundation. B. Tilbrook was supported by the Australian Department of the Environment and the Integrated Marine Observing System. A.Wiltshire was supported by the Joint UK DECC/Defra Met Office Hadley Centre Climate Programme (GA01101). P. Ciais,W. Peters, C. Le Quére, P. Regnier, and U. Schuster were supported by the EU FP7 through project GEOCarbon (283080). A. Arneth, P. Ciais, S. Sitch, and A. Wiltshire were supported by COMBINE (226520). V. Kitidis, M. Hoppema, N. Metzl, C. Le Quéré, U. Schuster, J. Schwiger, J. Segschneider, and T. Steinhoff were supported by the EU FP7 through project CARBOCHANGE (264879). A. Arnet, P. Friedlingstein, B. Poulter, and S. Sitch were supported by the EU FP7 through projects LUC4C (GA603542). P. Friedlingstein was also supported by EMBRACE (GA282672). F. Chevallier and G. R. van der Werf were supported by the EU FP7 through project MACC-II (283576).
    Repository-Name: Woods Hole Open Access Server
    Materialart: Article
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    ISSN: 0378-1119
    Schlagwort(e): N"2 fixation ; Recombinant DNA ; dctA gene expression ; integrating promoter-probe vector ; nucleotide sequence ; regulation ; root nodules ; symbiosis
    Quelle: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Thema: Biologie
    Materialart: Digitale Medien
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    Digitale Medien
    Digitale Medien
    Amsterdam : Elsevier
    Physica C: Superconductivity and its applications 229 (1994), S. 346-350 
    ISSN: 0921-4534
    Quelle: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Thema: Physik
    Materialart: Digitale Medien
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 6
    Digitale Medien
    Digitale Medien
    Oxford, UK : Blackwell Science Ltd
    Global change biology 4 (1998), S. 0 
    ISSN: 1365-2486
    Quelle: Blackwell Publishing Journal Backfiles 1879-2005
    Thema: Biologie , Energietechnik , Geographie
    Notizen: We constructed a carbon budget for young birch trees grown in ambient and elevated CO2 concentrations over their fourth year of growth. The annual total of net leaf photosynthesis was 110% more in elevated CO2 than in ambient CO2. However, the trees in elevated CO2 grew only 59% more biomass than the trees in ambient CO2 over the year. Modelling studies showed that larger loss of carbon from fine-root production and growth of the root-associated mycorrhiza by the trees in elevated CO2 probably accounted for all the remaining difference in net photosynthesis between the two treatments. Our modelling also showed that the fraction of net photosynthate consumed by respiration of nonleaf tissue was similar in the two CO2 treatments, and was 26% and 24% for trees in ambient and elevated CO2, respectively.Trees in elevated CO2 had 43% more leaves, and produced 110% more net photosynthate than trees in ambient CO2, even though the maximum rate of carboxylation per unit leaf nitrogen decreased by 21%. Sensitivity studies showed that down-regulation reduced the annual net photosynthetic production of the trees in elevated CO2 by only 6%. Direct effects of higher CO2 on photosynthesis and greater leaf area of the trees in elevated CO2 increased the net photosynthesis of the trees by 68% and 60%, respectively; and together accounted for most of the difference in net photosynthesis between the two treatments.
    Materialart: Digitale Medien
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 7
    Digitale Medien
    Digitale Medien
    Oxford, UK : Blackwell Publishing Ltd
    Plant breeding 124 (2005), S. 0 
    ISSN: 1439-0523
    Quelle: Blackwell Publishing Journal Backfiles 1879-2005
    Thema: Land- und Forstwirtschaft, Gartenbau, Fischereiwirtschaft, Hauswirtschaft
    Notizen: A protocol for Agrobacterium tumefaciens-mediated transformation of Brassica napus mesophyll protoplasts is described. A strain with a neomycin phosphotransferase (nptII) gene and a KCS gene under control of a napin promoter was used at co-cultivation. Transformed protoplasts were regenerated to fertile and morphologically normal transgenic plants. Transformants were confirmed by PCR of the nptII gene and NAP/KCS expression cassette, and Southern blot analysis. Seeds of the transformants showed a changed fatty acid profile: two transformants had a higher erucic acid level and differed significantly from that of B. napus. Genetic analysis of the progeny revealed that the kanamycin resistance introduced was inherited in a Mendelian fashion.
    Materialart: Digitale Medien
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 8
    Digitale Medien
    Digitale Medien
    Oxford, UK : Blackwell Publishing Ltd
    Plant, cell & environment 18 (1995), S. 0 
    ISSN: 1365-3040
    Quelle: Blackwell Publishing Journal Backfiles 1879-2005
    Thema: Biologie
    Notizen: Carbon exchange by the terrestrial biosphere is thought to have changed since pre-industrial times in response to increasing concentrations of atmospheric CO2 and variations (anomalies) in inter-annual air temperatures. However, the magnitude of this response, particularly that of various ecosystem types (biomes), is uncertain. Terrestrial carbon models can be used to estimate the direction and size of the terrestrial responses expected, providing that these models have a reasonable theoretical base. We formulated a general model of ecosystem carbon fluxes by linking a process-based canopy photosynthesis model to the Rothamsted soil carbon model for biomes that are not significantly affected by water limitation. The difference between net primary production (NPP) and heterotrophic soil respiration (Rh) represents net ecosystem production (NEP). The model includes (i) multiple compartments for carbon storage in vegetation and soil organic matter, (ii) the effects of seasonal changes in environmental parameters on annual NEP, and (iii) the effects of inter-annual temperature variations on annual NEP. Past, present and projected changes in atmospheric CO2 concentration and surface air temperature (at different latitudes) were analysed for their effects on annual NEP in tundra, boreal forest and humid tropical forest biomes. In all three biomes, annual NEP was predicted to increase with CO2 concentration but to decrease with warming. As CO2 concentrations and temperatures rise, the positive carbon gains through increased NPP are often outweighed by losses through increased Rh, particularly at high latitudes where global warming has been (and is expected to be) most severe. We calculated that, several times during the past 140 years, both the tundra and boreal forest biomes have switched between being carbon sources (annual NEP negative) and being carbon sinks (annual NEP positive). Most recently, significant warming at high latitudes during 1988 and 1990 caused the tundra and boreal forests to be net carbon sources. Humid tropical forests generally have been a carbon sink since 1960. These modelled responses of the various biomes are in agreement with other estimates from either field measurements or geochemical models. Under projected CO2 and temperature increases, the tundra and boreal forests will emit increasingly more carbon to the atmosphere while the humid tropical forest will continue to store carbon. Our analyses also indicate that the relative increase in the seasonal amplitude of the accumulated NEP within a year is about 0–14% year−1 for boreal forests and 0–23% year−1 in the tundra between 1960 and 1990.
    Materialart: Digitale Medien
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 9
    Digitale Medien
    Digitale Medien
    Oxford, UK : Blackwell Publishing Ltd
    Plant, cell & environment 16 (1993), S. 0 
    ISSN: 1365-3040
    Quelle: Blackwell Publishing Journal Backfiles 1879-2005
    Thema: Biologie
    Notizen: Two published models of canopy photosynthesis, MAESTRO and BIOMASS, are simulated to examine the response of tree stands to increasing ambient concentrations of carbon dioxide (Ca) and temperatures. The models employ the same equations to described leaf gas exchange, but differ considerably in the level of detail employed to represent canopy structure and radiation environment. Daily rates of canopy photosynthesis simulated by the two models agree to within 10% across a range of CO2 concentrations and temperatures. A doubling of Ca leads to modest increases of simulated daily canopy photosynthesis at low temperatures (10% increase at 10°C), but larger increases at higher temperatures (60% increase at 30°C). The temperature and CO2 dependencies of canopy photosynthesis are interpreted in terms of simulated contributions by quantum-saturated and non-saturated foliage. Simulations are presented for periods ranging from a diurnal cycle to several years. Annual canopy photosynthesis simulated by BIOMASS for trees experiencing no water stress is linearly related to simulated annual absorbed photosynthetically active radiation, with light utilization coefficients for carbon of ɛ= 1.66 and 2.07g MJ−1 derived for Ca of 350 and 700 μmol mol−1, respectively.
    Materialart: Digitale Medien
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 10
    Digitale Medien
    Digitale Medien
    Amsterdam : Elsevier
    Journal of Organometallic Chemistry 301 (1986), S. C49-C54 
    ISSN: 0022-328X
    Quelle: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Thema: Chemie und Pharmazie
    Materialart: Digitale Medien
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...