ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    ISSN: 1089-7674
    Quelle: AIP Digital Archive
    Thema: Physik
    Notizen: The amplitude and frequency of modes driven in the edge region of tokamak high mode (H-mode) discharges [type I edge-localized modes (ELMs)] are shown to depend on the discharge shape. The measured pressure gradient threshold for instability and its scaling with discharge shape are compared with predictions from ideal magnetohydrodynamic theory for low toroidal mode number (n) instabilities driven by pressure gradient and current density and good agreement is found. Reductions in mode amplitude are observed in discharge shapes with either high squareness or low triangularity where the stability threshold in the edge pressure gradient is predicted to be reduced and the most unstable mode is expected to have higher values of n. The importance of access to the ballooning mode second stability regime is demonstrated through the changes in the ELM character that occur when second regime access is not available. An edge stability model is presented that predicts that there is a threshold value of n for second regime access and that the most unstable mode has n near this threshold. © 2000 American Institute of Physics.
    Materialart: Digitale Medien
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    ISSN: 1089-7674
    Quelle: AIP Digital Archive
    Thema: Physik
    Notizen: A proof of principle magnetic feedback stabilization experiment has been carried out to suppress the resistive wall mode (RWM), a branch of the ideal magnetohydrodynamic (MHD) kink mode under the influence of a stabilizing resistive wall, on the DIII-D tokamak device [Plasma Phys. Controlled Fusion Research (International Atomic Energy Agency, Vienna, 1986), p. 159; Phys. Plasmas 1, 1415 (1994)]. The RWM was successfully suppressed and the high beta duration above the no-wall limit was extended to more than 50 times the resistive wall flux diffusion time. It was observed that the mode structure was well preserved during the time of the feedback application. Several lumped parameter formulations were used to study the feedback process. The observed feedback characteristics are in good qualitative agreement with the analysis. These results provide encouragement to future efforts towards optimizing the RWM feedback methodology in parallel to what has been successfully developed for the n=0 vertical positional control. Newly developed MHD codes have been extremely useful in guiding the experiments and in providing possible paths for the next step. © 2001 American Institute of Physics.
    Materialart: Digitale Medien
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    ISSN: 1089-7674
    Quelle: AIP Digital Archive
    Thema: Physik
    Notizen: Reliable operation of discharges with negative central magnetic shear has led to significant increases in plasma performance and reactivity in both low confinement, L-mode, and high confinement, H-mode, regimes in the DIII-D tokamak [Plasma Physics and Controlled Nuclear Fusion Research 1986 (International Atomic Energy Agency, Vienna, 1987), Vol. 1, p. 159]. Using neutral beam injection early in the initial current ramp, a large range of negative shear discharges have been produced with durations lasting up to 3.2 s. The total noninductive current (beam plus bootstrap) ranges from 50% to 80% in these discharges. In the region of shear reversal, significant peaking of the toroidal rotation [fφ(0)∼30–60 kHz] and ion temperature [Ti(0)∼15–22 keV] profiles are observed. In high-power discharges with an L-mode edge, peaked density profiles are also observed. Confinement enhancement factors up to H≡τE/τITER-89P∼2.5 with an L-mode edge, and H∼3.3 in an edge localized mode (ELM)-free H mode, are obtained. Transport analysis shows both ion thermal diffusivity and particle diffusivity to be near or below standard neoclassical values in the core. Large pressure peaking in the L mode leads to high disruptivity with βN≡βT/(I/aB)≤2.3, while broader pressure profiles in the H mode gives low disruptivity with βN≤4.2. © 1996 American Institute of Physics.
    Materialart: Digitale Medien
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    ISSN: 1089-7674
    Quelle: AIP Digital Archive
    Thema: Physik
    Notizen: One promising approach to maintaining stability of high beta tokamak plasmas is the use of a conducting wall near the plasma to stabilize low-n ideal magnetohydrodynamic instabilities. However, with a resistive wall, either plasma rotation or active feedback control is required to stabilize the more slowly growing resistive wall modes (RWMs). Previous experiments have demonstrated that plasmas with a nearby conducting wall can remain stable to the n=1 ideal external kink above the beta limit predicted with the wall at infinity. Recently, extension of the wall stabilized lifetime τL to more than 30 times the resistive wall time constant τw and detailed, reproducible observation of the n=1 RWM have been possible in DIII-D [Plasma Physics and Controlled Fusion Research (International Atomic Energy Agency, Vienna, 1986), p. 159] plasmas above the no-wall beta limit. The DIII-D measurements confirm characteristics common to several RWM theories. The mode is destabilized as the plasma rotation at the q=3 surface decreases below a critical frequency of 1–7 kHz (∼1% of the toroidal Alfvén frequency). The measured mode growth times of 2–8 ms agree with measurements and numerical calculations of the dominant DIII-D vessel eigenmode time constant τw. From its onset, the RWM has little or no toroidal rotation (ωmode≤τw−1(very-much-less-than)ωplasma), and rapidly reduces the plasma rotation to zero. These slowly growing RWMs can in principle be destabilized using external coils controlled by a feedback loop. In this paper, the encouraging results from the first open loop experimental tests of active control of the RWM, conducted in DIII-D, are reported. © 1999 American Institute of Physics.
    Materialart: Digitale Medien
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    ISSN: 1089-7674
    Quelle: AIP Digital Archive
    Thema: Physik
    Notizen: The role of E×B flow shear on confinement enhancement in the DIII-D tokamak [Plasma Physics and Controlled Nuclear Fusion Research, 1986 (International Atomic Energy Agency, Vienna, 1987), Vol. 1, p. 159] high internal inductance discharges with high-confinement edge is investigated experimentally using a nonaxisymmetric poloidal magnetic-field perturbation from an external coil to drag down the plasma toroidal rotation. At similar values of internal inductance, discharges which rotate faster and have a stronger E×B flow shear have better confinement. These results indicate that E×B flow shear likely plays an important role in the confinement enhancement of these discharges. © 1998 American Institute of Physics.
    Materialart: Digitale Medien
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 6
    ISSN: 1089-7674
    Quelle: AIP Digital Archive
    Thema: Physik
    Notizen: Discharges exhibiting the highest plasma energy and fusion reactivity yet realized in the DIII-D tokamak [Plasma Physics and Controlled Nuclear Fusion Research, 1986 (International Atomic Energy Agency, Vienna, 1987), Vol. I, p. 159] have been produced by combining the benefits of a hollow or weakly sheared central current profile [Phys. Plasmas 3, 1983 (1996)] with a high confinement (H mode) edge. In these discharges, low-power neutral beam injection heats the electrons during the initial current ramp, and "freezes in" a hollow or flat central current profile. When the neutral beam power is increased, formation of a region of reduced transport and highly peaked profiles in the core often results. Shortly before these plasmas would otherwise disrupt, a transition is triggered from the low (L mode) to high (H mode) confinement regimes, thereby broadening the pressure profile and avoiding the disruption. These plasmas continue to evolve until the high-performance phase is terminated nondisruptively at much higher βT (ratio of plasma pressure to toroidal magnetic field pressure) than would be attainable with peaked profiles and an L-mode edge. Transport analysis indicates that in this phase, the ion diffusivity is equivalent to that predicted by Chang–Hinton neoclassical theory over the entire plasma volume. This result is consistent with suppression of turbulence by locally enhanced E×B flow shear, and is supported by observations of reduced fluctuations in the plasma. Calculations of performance in these discharges extrapolated to a deuterium–tritium (DT) fuel mixture indicates that such plasmas could produce a DT fusion gain QDT=0.32. © 1997 American Institute of Physics.
    Materialart: Digitale Medien
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 7
    ISSN: 1089-7674
    Quelle: AIP Digital Archive
    Thema: Physik
    Notizen: Discharges with negative central magnetic shear (NCS) hold the promise of enhanced fusion performance in advanced tokamaks. However, stability to long wavelength magnetohydrodynamic modes is needed to take advantage of the improved confinement found in NCS discharges. The stability limits seen in DIII-D [J. L. Luxon and L. G. Davis, Fusion Technol. 8, 441 (1985)] experiments depend on the pressure and current density profiles and are in good agreement with stability calculations. Discharges with a strongly peaked pressure profile reach a disruptive limit at low beta, βN=β(I/aB)−1≤2.5 (% m T/MA), caused by an n=1 ideal internal kink mode or a global resistive instability close to the ideal stability limit. Discharges with a broad pressure profile reach a soft beta limit at significantly higher beta, βN=4 to 5, usually caused by instabilities with n〉1 and usually driven near the edge of the plasma. With broad pressure profiles, the experimental stability limit is independent of the magnitude of negative shear but improves with the internal inductance, corresponding to lower current density near the edge of the plasma. Understanding of the stability limits in NCS discharges has led to record DIII-D fusion performance in discharges with a broad pressure profile and low edge current density. © 1997 American Institute of Physics.
    Materialart: Digitale Medien
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 8
    Digitale Medien
    Digitale Medien
    [S.l.] : American Institute of Physics (AIP)
    Physics of Plasmas 1 (1994), S. 3277-3287 
    ISSN: 1089-7674
    Quelle: AIP Digital Archive
    Thema: Physik
    Notizen: The previously developed single-gap kinetic theory for toroidicity-induced Alfvén eigenmodes (TAE) is extended and applied to Doublet III-D [J. L. Luxon and L. G. Davis, Fusion Technol. 8, 441 (1985)] experimental data. It is found that the theory gives reasonable agreement with the data when an appropriate magnetohydrodynamic boundary condition is accounted for. As is shown, this boundary condition is equivalent to an appropriate real frequency shift relative to the continuum gap. The correct eigenfunction near the gap, and thus the correct damping, is obtained by using the gap structure calculated from an equilibrium reconstruction that includes low aspect ratio, noncircularity, and finite beta effects, combined with an experimentally measured frequency. In the considered experimental cases, the damping is well into the nonideal regime.
    Materialart: Digitale Medien
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 9
    ISSN: 1089-7674
    Quelle: AIP Digital Archive
    Thema: Physik
    Notizen: Detailed analysis of recent high beta discharges in the DIII-D [Plasma Physics Controlled Nuclear Fusion Research, 1986 (International Atomic Energy Agency, Vienna, 1987), Vol. I, p. 159] tokamak demonstrates that the resistive vacuum vessel can provide stabilization of low n magnetohydrodynamic (MHD) modes. The experimental beta values reaching up to βT=12.6% are more than 30% larger than the maximum stable beta calculated with no wall stabilization. Plasma rotation is essential for stabilization. When the plasma rotation slows sufficiently, unstable modes with the characteristics of the predicted "resistive wall'' mode are observed. Through slowing of the plasma rotation between the q=2 and q=3 surfaces with the application of a nonaxisymmetric field, it has been determined that the rotation at the outer rational surfaces is most important, and that the critical rotation frequency is of the order of Ω/2π=1 kHz. © 1995 American Institute of Physics.
    Materialart: Digitale Medien
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 10
    Digitale Medien
    Digitale Medien
    [S.l.] : American Institute of Physics (AIP)
    Physics of Plasmas 1 (1994), S. 1415-1431 
    ISSN: 1089-7674
    Quelle: AIP Digital Archive
    Thema: Physik
    Notizen: Stability at high beta (the ratio of plasma pressure to magnetic field pressure) is an important requirement for a compact, economically attractive fusion reactor. It is also important in present large tokamak experiments, where the best performance is now often limited by instabilities rather than by energy transport. The past decade has seen major advances in our understanding of the stability of high beta tokamak plasmas, as well as in the achievement of high values of beta. Ideal magnetohydrodynamic (MHD) theory has been remarkably successful in predicting the stability limits, and the scaling of maximum stable beta with the normalized plasma current predicted by Troyon and others has been confirmed in many experiments, yielding a limit βmax≈3.5 (%-m-T/MA) I/aB (where I is the plasma current, a is the minor radius, and B is the toroidal field). The instabilities which are predicted to limit beta have been observed experimentally, in good agreement with theoretical predictions, including long-wavelength kink modes and short-wavelength ballooning instabilities. Advances in understanding of tokamak stability have opened several paths to higher values of beta. The use of strong discharge shaping, approaching the limits of axisymmetric stability, has allowed beta values as high as 12% to be reached in agreement with Troyon scaling. Recent experimental results and ideal MHD modeling have shown that the beta limit depends on the form of the pressure and current density profiles, and modification of the current density to create a centrally peaked profile has allowed beta values up to 6I/aB to be achieved experimentally.Recent experiments have also begun to explore both local and global access to the predicted second stable regime for ballooning modes, with the potential for very high values of β/(I/aB). Preliminary experimental investigations of wall stabilization and radio-frequency (RF) current profile control hold the promise of further improvements in beta through passive and active control of instabilities. The developing understanding of high beta stability and the application of this understanding to present experiments and future fusion devices hold the potential for production of stable, steady state plasmas at high beta with good confinement.
    Materialart: Digitale Medien
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...