ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
Sammlung
Verlag/Herausgeber
Erscheinungszeitraum
  • 1
    Publikationsdatum: 2013-04-25
    Beschreibung: ABSTRACT [1]  Understanding specific pathways for sand transport in the lower reaches of large rivers, including the Mississippi, is a key for addressing multiple significant geologic problems, such as delta building and discharge to the oceans, and for environmental restoration efforts in deltaic environments threatened by rising sea levels. Field studies were performed in the Mississippi River 75–100 km upstream of the Gulf of Mexico outlet in 2010–2011 to examine sand transport phenomena in the tidally affected river channel over a range of discharges. Methods included mapping bottom morphology (multibeam sonar), cross-sectional and longitudinal measurements of water column velocity and acoustic backscatter, suspended sediment sampling, and channel-bed sampling. Substantial interaction was observed between the flow conditions in the river (boundary shear stress), channel-bed morphology (size and extent of sandy bedforms), and bed material sand transport (quantity, transport mode, and spatial distribution). A lateral shift was observed in the region of maximum bed material transport from deep to shallow areas of subaqueous sand bars with increasing water discharge. Bed material was transported both in traction and in suspension at these water discharges, and we posit that the downriver flux of sand grains is composed of both locally- and drainage basin-sourced material, with distinct transport pathways and relations to flow conditions. We provide suggestions for the optimal design and operation of planned river diversion projects.
    Print ISSN: 0148-0227
    Thema: Geologie und Paläontologie , Physik
    Publiziert von Wiley im Namen von American Geophysical Union (AGU).
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Publikationsdatum: 2016-11-10
    Beschreibung: Fjords are disproportionately important for global organic carbon (OC) burial relative to their spatial extent, and may be important in sequestering atmospheric CO2, providing a negative climate feedback. Within fjords, multiple locally variable delivery mechanisms control mineral sediment deposition, which in turn modulates OC burial. Sediment and OC sources in Fiordland, New Zealand include terrigenous input at fjord heads, sediment reworking over fjord-mouth sills, and landslide events from steep fjord walls. Box cores were analyzed for sedimentary texture, sediment accumulation rate, and OC content to evaluate the relative importance of each delivery mechanism. Sediment accumulation was up to 3.4 mm/yr in proximal and distal fjord areas, with lower rates in medial reaches. X-radiograph and 210Pb stratigraphy indicate mass wasting and surface-sediment bioturbation throughout the fjords. Sediment accumulation rates are inversely correlated with %OC. Spatial heterogeneity in sediment depositional processes and rates is important when evaluating OC burial within fjords.
    Print ISSN: 0094-8276
    Digitale ISSN: 1944-8007
    Thema: Geologie und Paläontologie , Physik
    Publiziert von Wiley im Namen von American Geophysical Union (AGU).
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...