ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
Sammlung
Erscheinungszeitraum
  • 1
    Publikationsdatum: 2019
    Beschreibung: Journal of Physical Oceanography, Ahead of Print. 〈br/〉
    Print ISSN: 0022-3670
    Digitale ISSN: 1520-0485
    Thema: Geologie und Paläontologie , Physik
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Publikationsdatum: 2016-12-25
    Beschreibung: Strong spatial differences in diapycnal mixing across the Canadian Arctic Archipelago are diagnosed in a 1/12° basin-scale model. Changes in mass flux between water flowing into or out of several regions are analyzed using a volume-integrated advection–diffusion equation, and focus is given to denser water, the direct advective flux of which is mediated by sills. The unknown in the mass budget, mixing strength, is a quantity seldom explored in other studies of the Archipelago, which typically focus on fluxes. Regionally averaged diapycnal diffusivities and buoyancy fluxes are up to an order of magnitude larger in the eastern half of the Archipelago relative to those in the west. Much of the elevated mixing is concentrated near sills in Queens Channel and Barrow Strait, with stronger mixing particularly evident in the net shifts of the densest water to lower densities as it traverses these constrictions. Associated with these shifts are areally averaged buoyancy fluxes up to 10 −8 m 2 s −3 through the 1027 kg m −3 isopycnal surface, which lies at approximately 100m depth. This value is similar in strength to the destabilizing buoyancy flux at the ocean surface during winter. Effective diffusivities estimated from the buoyancy fluxes can exceed 10 −4 m 2 s −1 , but are often closer to 10 −5 m 2 s −1 across the Archipelago. Tidal forcing, known to modulate mixing in the Archipelago, is not included in the model. Nevertheless, mixing metrics derived from our simulation are of the same order of magnitude as the few comparable observations. This article is protected by copyright. All rights reserved.
    Print ISSN: 0148-0227
    Thema: Geologie und Paläontologie , Physik
    Publiziert von Wiley im Namen von American Geophysical Union (AGU).
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Publikationsdatum: 2017-01-05
    Beschreibung: Strong spatial differences in diapycnal mixing across the Canadian Arctic Archipelago are diagnosed in a 1/12° basin-scale model. Changes in mass flux between water flowing into or out of several regions are analyzed using a volume-integrated advection–diffusion equation, and focus is given to denser water, the direct advective flux of which is mediated by sills. The unknown in the mass budget, mixing strength, is a quantity seldom explored in other studies of the Archipelago, which typically focus on fluxes. Regionally averaged diapycnal diffusivities and buoyancy fluxes are up to an order of magnitude larger in the eastern half of the Archipelago relative to those in the west. Much of the elevated mixing is concentrated near sills in Queens Channel and Barrow Strait, with stronger mixing particularly evident in the net shifts of the densest water to lower densities as it traverses these constrictions. Associated with these shifts are areally averaged buoyancy fluxes up to 10 -8 , m 2 , s -3 through the 1027 kg m -3 isopycnal surface, which lies at approximately 100 m depth. This value is similar in strength to the destabilizing buoyancy flux at the ocean surface during winter. Effective diffusivities estimated from the buoyancy fluxes can exceed 10 -4 m 2 s -1 , but are often closer to 10 -5 m 2 s -1 across the Archipelago. Tidal forcing, known to modulate mixing in the Archipelago, is not included in the model. Nevertheless, mixing metrics derived from our simulation are of the same order of magnitude as the few comparable observations. This article is protected by copyright. All rights reserved.
    Print ISSN: 0148-0227
    Thema: Geologie und Paläontologie , Physik
    Publiziert von Wiley im Namen von American Geophysical Union (AGU).
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...