ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2012-11-21
    Description: A methodology is developed to estimate daily river discharge at an ungauged site using remote sensing data. Use is made of ERS-2 and ENVISAT satellite altimetry to provide a time series of river channel stage levels and longitudinal channel slope, and Landsat satellite imagery to provide a range of channel widths over a 50 km reach of river. The data are substituted into the Bjerklie et al . (2003) equation, which is based on the Manning's resistance equation, and has been developed using a global database of channel hydraulic information and discharge measurements. Our methodology has been applied at three locations on the Mekong and Ob Rivers and validated against daily in situ discharge measurements. The results show Nash Sutcliffe efficiency values of 0.90 at Nakhon Phanom and 0.86 at Vientiane on the Mekong, and 0.86 at Kalpashevo on the Ob. Copyright © 2012 John Wiley & Sons, Ltd.
    Print ISSN: 0885-6087
    Electronic ISSN: 1099-1085
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019
    Description: Abstract Natural Flood Management (NFM) is receiving much attention in the United Kingdom and across Europe and is now widely seen as a valid solution to help sustainably manage flood risk whilst offering significant multiple benefits. However, there is little empirical evidence demonstrating the effectiveness of NFM interventions in reducing flood hazard at the catchment scale. The Belford Burn catchment (~6km2) in Northern England provides a focus for this article, and utilises observed data collected throughout the NFM project's monitoring period (2007–2012). This study discusses the introduction of catchment‐wide water storage through the implementation of runoff attenuation features (RAFs), in‐particular offline storage areas, as a means of mitigating peak flow magnitudes in flood‐causing events. A novel experimental monitoring setup is introduced alongside an analytical approach to quantify the impact of individual offline storage areas, which has demonstrated local reductions in peak flow for low magnitude storm events. Finally, a physically based model has been created to demonstrate the impact of a network of offline storage areas to enable assessment of storage thresholds required to mitigate design storm events, thus enabling design of an NFM scheme. The modelling results have shown that peak flow can be reduced by more than 30% at downstream receptors.
    Electronic ISSN: 1753-318X
    Topics: Architecture, Civil Engineering, Surveying , Geosciences
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...