ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • Artikel  (12)
  • Architektur, Bauingenieurwesen, Vermessung  (12)
Sammlung
  • Artikel  (12)
Erscheinungszeitraum
  • 1
    Publikationsdatum: 2016-07-12
    Beschreibung: A method was developed for crop area mapping inspired by spectral matching techniques (SMTs) and based on phenological characteristics of different crop types applied using 100-m Proba-V NDVI data for the season 2014–2015. Ten-daily maximum value NDVI composites were created and smoothed in SPIRITS (spirits.jrc.ec.europa.eu). The study sites were globally spread agricultural areas located in Flanders (Belgium), Sria (Russia), Kyiv (Ukraine) and Sao Paulo (Brazil). For each pure pixel within the field, the NDVI profile of the crop type for its growing season was matched with the reference NDVI profile based on the training set extracted from the study site where the crop type originated. Three temporal windows were tested within the growing season: green-up to senescence, green-up to dormancy and minimum NDVI at the beginning of the growing season to minimum NDVI at the end of the growing season. Post classification rules were applied to the results to aggregate the crop type at the plot level. The overall accuracy (%) ranged between 65 and 86, and the kappa coefficient changed from 0.43–0.84 according to the site and the temporal window. In order of importance, the crop phenological development period, parcel size, shorter time window, number of ground-truth parcels and crop calendar similarity were the main reasons behind the differences between the results. The methodology described in this study demonstrated that 100-m Proba-V has the potential to be used in crop area mapping across different regions in the world.
    Digitale ISSN: 2072-4292
    Thema: Architektur, Bauingenieurwesen, Vermessung , Geographie
    Publiziert von MDPI Publishing
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Publikationsdatum: 2016-02-26
    Beschreibung: According to Monteith’s theory, crop biomass is linearly correlated with the amount of absorbed photosynthetically active radiation (APAR) and a constant radiation use efficiency (RUE) down-regulated by stress factors such as CO2 fertilisation, temperature and water stress. The objective was to investigate the relative importance of these stress factors in relation to regional biomass production and yield. The production efficiency model Copernicus Global Land Service-Dry Matter Productivity (CGLS-DMP), which follows Monteith’s theory, was modified and evaluated for common wheat and silage maize in France, Belgium and Morocco using SPOT VEGETATION for the period 1999–2012. For each study site the stress factor that has the highest correlation with crop yield was retained. The correlation between crop yield data and cumulative modified DMP, CGLS-DMP, fAPAR, and NDVI values were analysed for different crop growth stages. A leave-one-year-out cross validation was used to test the robustness of the model. On average, R2 values increased from 0.49 for CGLS-DMP to 0.68 for modified DMP, RMSE (t/ha) decreased from 0.84–0.61, RRMSE (%) reduced from 13.1–8.9, MBE (t/ha) decreased from 0.05–0.03 and the index of model performance (E1) increased from 0.08–0.28 for the selected sites and crops. The best results were obtained by including combinations of the most appropriate stress factors for each selected region and cumulating the modified DMP during part of the growing season that includes the reproductive stage. Though no single solution to the improvement of a global product could be demonstrated, our findings encourage an extension of the methodology to other regions of the world.
    Digitale ISSN: 2072-4292
    Thema: Architektur, Bauingenieurwesen, Vermessung , Geographie
    Publiziert von MDPI Publishing
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Publikationsdatum: 2018
    Beschreibung: A timely inventory of agricultural areas and crop types is an essential requirement for ensuring global food security and allowing early crop monitoring practices. Satellite remote sensing has proven to be an increasingly more reliable tool to identify crop types. With the Copernicus program and its Sentinel satellites, a growing source of satellite remote sensing data is publicly available at no charge. Here, we used joint Sentinel-1 radar and Sentinel-2 optical imagery to create a crop map for Belgium. To ensure homogenous radar and optical inputs across the country, Sentinel-1 12-day backscatter mosaics were created after incidence angle normalization, and Sentinel-2 normalized difference vegetation index (NDVI) images were smoothed to yield 10-daily cloud-free mosaics. An optimized random forest classifier predicted the eight crop types with a maximum accuracy of 82% and a kappa coefficient of 0.77. We found that a combination of radar and optical imagery always outperformed a classification based on single-sensor inputs, and that classification performance increased throughout the season until July, when differences between crop types were largest. Furthermore, we showed that the concept of classification confidence derived from the random forest classifier provided insight into the reliability of the predicted class for each pixel, clearly showing that parcel borders have a lower classification confidence. We concluded that the synergistic use of radar and optical data for crop classification led to richer information increasing classification accuracies compared to optical-only classification. Further work should focus on object-level classification and crop monitoring to exploit the rich potential of combined radar and optical observations.
    Digitale ISSN: 2072-4292
    Thema: Architektur, Bauingenieurwesen, Vermessung , Geographie
    Publiziert von MDPI
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    Publikationsdatum: 2020-07-10
    Beschreibung: Wheat yield variability will increase in the future due to the projected increase in extreme weather events and long-term climate change effects. Currently, regional agricultural statistics are used to monitor wheat yield. Remotely sensed vegetation indices have a higher spatio-temporal resolution and could give more insight into crop yield. In this paper, we (i) evaluate the possibility to use Normalized Difference Vegetation Index (NDVI) time series to estimate wheat yield in Latvia and (ii) determine which weather variables impact wheat yield changes using both ALARO-0 and REMO Regional Climate Models (RCM) output. The integral from NDVI series (aNDVI) for winter and spring wheat fields is used as a predictor to model regional wheat yield from 2014 to 2018. A correlation analysis between weather variables, wheat yield and aNDVI was used to elucidate which weather variables impact wheat yield changes in Latvia. Our results indicate that high temperatures in June for spring wheat and in July for winter wheat had a negative correlation with yield. A linear regression yield model explained 71% of the variability with a residual standard error of 0.55 Mg/ha. When RCM data were added as predictor variables to the wheat yield empirical model a random forest approach resulted in better results compared to a linear regression approach, the explained variance increased up to 97% and the residual standard error decreased to 0.17 Mg/ha. We conclude that NDVI time series and RCM output enabled regional crop yield and weather impact monitoring at higher spatio-temporal resolutions than regional statistics.
    Digitale ISSN: 2072-4292
    Thema: Architektur, Bauingenieurwesen, Vermessung , Geographie
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    Publikationsdatum: 2002-01-01
    Beschreibung: TOPMODEL, a semi-distributed, topographically based hydrological model, was applied to simulate continously the runoff hydrograph of a medium-sized (379 km2), humid tropical catchment. The objectives were to relate hydrological responses to runoff generation mechanisms operating in the catchment and to estimate the uncertainty associated with runoff prediction. Field observations indicated that water tables were not parallel to the surface topography, particularly at the start of the wet season. A reference topographic index λREF was therefore introduced into the TOPMODEL structure to increase the weighting of local storage deficits in upland areas. The model adaptation had the effect of deepening water tables with distance from the river channel. The generalized likelihood uncertainty estimation (GLUE) framework was used to assess the performance of the model with randomly selected parameter sets, and to set simulation confidence limits. The model simulated well the fast subsurface and overland flow events superimposed on the seasonal rise and fall of the baseflow. The top ranked parameter sets achieved modelling efficiencies of 0.943 and 0.849 in 1994 and 1995 respectively. The GLUE analysis showed that the exponential decay parameter m, controlling the baseflow and the local storage deficit, was the most sensitive parameter. There was increased uncertainty in the simulations of storm events during the early and late phase of the season, which was due to a combination of: errors in detecting the rainfall depths for convectional rainfall events; the treatment of rainfall as a catchment areal value; and, the strong seasonality in runoff response in the humid tropics. Copyright © 2002 John Wiley and Sons, Ltd.
    Print ISSN: 0885-6087
    Digitale ISSN: 1099-1085
    Thema: Architektur, Bauingenieurwesen, Vermessung , Geographie
    Publiziert von Wiley
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 6
    Publikationsdatum: 2001-01-01
    Beschreibung: Temporal and spatial rainfall patterns were analysed to describe the distribution of daily rainfall across a medium-sized (379 km2) tropical catchment. Investigations were carried out to assess whether a climatological variogram model was appropriate for mapping rainfall taking into consideration the changing rainfall characteristics through the wet season. Exploratory, frequency and moving average analyses of 30 years' daily precipitation data were used to describe the reliability and structure of the rainfall regime. Four phases in the wet season were distinguished, with the peak period (mid-August to mid-September) representing the wettest period. A low-cost rain gauge network of 36 plastic gauges with overflow reservoirs was installed and monitored to obtain spatially distributed rainfall data. Geostatistical techniques were used to develop global and wet season phase climatological variograms. The unscaled climatological variograms were cross-validated and compared using a range of rainfall events. Ordinary Kriging was used as the interpolation method. The global climatological variogram γ* = 1·2 [1 - exp - h/18 km] performed better, and was used to optimize the number and location of rain gauges in the network. The research showed that although distinct wet season phases could be established based on the temporal analysis of daily rainfall characteristics, the interpolation of daily rainfall across a medium-sized catchment based on spatial analysis was better served by using the global rather than the wet season phase climatological variogram model. Copyright © 2001 John Wiley & Sons, Ltd.
    Print ISSN: 0885-6087
    Digitale ISSN: 1099-1085
    Thema: Architektur, Bauingenieurwesen, Vermessung , Geographie
    Publiziert von Wiley
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 7
    Publikationsdatum: 2016-07-11
    Digitale ISSN: 2072-4292
    Thema: Architektur, Bauingenieurwesen, Vermessung , Geographie
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 8
    Publikationsdatum: 2016-02-25
    Digitale ISSN: 2072-4292
    Thema: Architektur, Bauingenieurwesen, Vermessung , Geographie
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 9
    Publikationsdatum: 2018-10-16
    Beschreibung: A timely inventory of agricultural areas and crop types is an essential requirement for ensuring global food security and allowing early crop monitoring practices. Satellite remote sensing has proven to be an increasingly more reliable tool to identify crop types. With the Copernicus program and its Sentinel satellites, a growing source of satellite remote sensing data is publicly available at no charge. Here, we used joint Sentinel-1 radar and Sentinel-2 optical imagery to create a crop map for Belgium. To ensure homogenous radar and optical inputs across the country, Sentinel-1 12-day backscatter mosaics were created after incidence angle normalization, and Sentinel-2 normalized difference vegetation index (NDVI) images were smoothed to yield 10-daily cloud-free mosaics. An optimized random forest classifier predicted the eight crop types with a maximum accuracy of 82% and a kappa coefficient of 0.77. We found that a combination of radar and optical imagery always outperformed a classification based on single-sensor inputs, and that classification performance increased throughout the season until July, when differences between crop types were largest. Furthermore, we showed that the concept of classification confidence derived from the random forest classifier provided insight into the reliability of the predicted class for each pixel, clearly showing that parcel borders have a lower classification confidence. We concluded that the synergistic use of radar and optical data for crop classification led to richer information increasing classification accuracies compared to optical-only classification. Further work should focus on object-level classification and crop monitoring to exploit the rich potential of combined radar and optical observations.
    Digitale ISSN: 2072-4292
    Thema: Architektur, Bauingenieurwesen, Vermessung , Geographie
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 10
    Publikationsdatum: 2019-10-01
    Digitale ISSN: 2467-9674
    Thema: Architektur, Bauingenieurwesen, Vermessung
    Publiziert von Elsevier
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...