ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (4)
  • 1995-1999  (4)
  • Biology  (4)
Collection
  • Articles  (4)
Year
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    The journal of membrane biology 167 (1999), S. 43-52 
    ISSN: 1432-1424
    Keywords: Key words: HeLa cells — Inward rectifier — Cloning — Kir2.1 —Xenopus oocyte — Channel
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: Abstract. Previous patch-clamp studies have shown that the potassium permeability of the plasma membrane in HeLa cells, a cell line derived from an epidermoid carcinoma of the cervix, is controlled by various K+-selective pores including an IRK1 type inwardly rectifying K+ channel. We used the sequence previously reported for the human heart Kir2.1 channel to design a RT-PCR strategy for cloning the IRK1 channel in HeLa cells. A full-length clone of 1.3 kb was obtained that was identical to the human cardiac Kir2.1 inward rectifier. The nature of the cloned channel was also confirmed in a Northern blot analysis where a signal of 5.3 kb corresponding to the molecular weight expected for a Kir2.1 channel transcript was identified not only in HeLa cells, but also in WI-38, ECV304 and bovine aortic endothelial cells. The HeLa IRK1 channel cDNA was subcloned in an expression vector (pMT21) and injected into Xenopus oocytes. Cell-attached and inside-out single channel recordings obtained from injected oocytes provided evidence for a voltage-independent K+-selective channel with current/voltage characteristics typical of a strong inward rectifier. The single channel conductance for inward currents measured in 200 mm K2SO4 conditions was estimated at 40 ± 1 pS (n= 3), for applied voltages ranging from −100 to −160 mV, in agreement with the unitary conductance for the IRK1 channel identified in HeLa cells. In addition, the single channel conductance for inward currents, Γ, was found to vary as a function of αK, the external K+ ion activity, according to Γ=Γ0 [αK]δ with Γ0= 3.3 pS and δ= 0.5. Single channel recordings from injected oocytes also provided evidence of a voltage-dependent block by external Cs+ and Ba2+. The presence of 500 μm Cs+ caused a voltage-dependent flickering, typical of a fast channel blocking process which resulted in a reduction of the channel open probability at increasingly negative membrane potential values. The fractional electrical distance computed for the Cs+ blocking site was greater than 1 indicating a multiple ion channel occupation. In contrast, external Ba2+ at concentrations ranging from 25 to 100 μm caused a slow channel block, consistent with the binding of a single Ba2+ ion at a site located at half the membrane span. It is concluded on the basis of these observations that HeLa cells expressed a Kir2.1 type inwardly rectifying channel likely to be involved in maintaining and regulating the cell resting potential.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Parasitology research 82 (1996), S. 230-237 
    ISSN: 1432-1955
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Abstract  Subgenomic libraries were constructed from Sarcocystis muris total DNA. Hybridization screening with a microneme-specific cDNA probe resulted in two clones that were sequenced. The amino acid sequences deduced showed 87% homology among each other. Three different domains were recognized within both polypeptides. Domain I includes the putative N-terminal signal sequence. Domain II represents a strongly hydrophilic region, entirely homologous in the two genes. Domain III encodes the mature polypeptides with theoretical molecular masses of 15.1 kDa each. Among 28 amino acid changes in this region, 19 replacements are conservative. The putative polypeptides carried 12 conserved cysteine residues and showed homologies with plasma kallikrein, factor XI, and an antigen of Eimeria tenella. The recombinant proteins are recognized by the monoclonal antibody 3A8 directed against the 16/17-kDa microneme antigen of S. muris cystozoites. Antiserum raised against one of the purified fusion proteins cross-reacts with its counterpart and with the native 16/17-kDa band-doublet.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Parasitology research 82 (1996), S. 468-474 
    ISSN: 1432-1955
    Keywords: Abbreviationsaa Amino acids ; BFA brefeldin A ; bp base pairs ; ER endoplasmic reticulum ; FCS fetal calf serum ; HEPES N-(2-5hydroxyethyl)piperazine-N′- (2-ethanesulfonic acid) ; mAb(s) monoclonal antibodies ; NP-40 Nonidet P-40 ; ORF open reading frame ; pSM/1.6 plasmid carrying the cDNA insert ; SDS-PAGE sodium dodecyl sulfate-polyacrylamide gel electro- phoresis ; SRP signal recognition particle
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Abstract  The cDNA clone pSM/1.6 encoding the 26.5-kDa precursor molecule of the 16/17-kDa microneme antigen of Sarcocystis muris cyst merozoites was expressed in a cell-free translation/translocation system to study translocation of the protein across membranes. The antigen was found to be translocated across heterologous endoplasmic reticulum membranes. Translocation was accompanied by cleavage of a signal peptide to create a 23-kDa polypeptide that was completely protected from digestion with proteinase K. Pulse-chase analysis of [35S]-methionine-labeled S. muris cyst merozoites demonstrated that the 16/17-kDa antigen derived from a 23-kDa precursor molecule and that its processing occurred at between a few minutes and 2 h after biosynthesis. This leads to the conclusion that the native microneme antigen is secreted from the parasite cell via the endoplasmic reticulum. Sorting into micronemes might occur during transition through a Golgi-like structure, involving cleavage of the hydrophilic propeptide to create the mature 16/17-kDa protein.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 1999-10-01
    Print ISSN: 0021-924X
    Electronic ISSN: 1756-2651
    Topics: Biology , Chemistry and Pharmacology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...