ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    Publikationsdatum: 2013-08-24
    Beschreibung: We investigate the relationship between sulfur degassing and oxygen fugacity at Erta Ale and Masaya volcanoes. Oxygen fugacity was assessed utilizing Fe 3+ /∑Fe ratios and major element compositions measured in olivine-hosted melt inclusions and matrix glasses. Erta Ale melts have Fe 3+ /∑Fe of 0.15 to 0.16, reflecting f O 2 of ΔQFM 0.0±0.3, which is indistinguishable from f O 2 calculated from CO 2 /CO ratios in high temperature gases. Masaya is more oxidized at ΔQFM +1.7±0.4, typical of arc settings. Sulfur isotope compositions of gases and scoria at Erta Ale (δ 34 S gas -0.5‰; δ 34 S scoria +0.9‰) and Masaya (δ 34 S gas +4.8‰; δ 34 S scoria +7.4‰) reflect distinct sulfur sources, as well as isotopic fractionation during degassing (equilibrium and kinetic fractionation effects). Sulfur speciation in melts plays an important role in isotope fractionation during degassing and S 6+ /∑S is 〈0.07 in Erta Ale melt inclusions compared to 〉0.67 in Masaya melt inclusions. No change is observed in Fe 3+ /∑Fe or S 6+ /∑S with extent of S degassing at Erta Ale, indicating negligible effect on f O 2 , and further suggesting that H 2 S is the dominant gas species exsolved from the S 2- -rich melt (i.e. no redistribution of electrons). High SO 2 /H 2 S observed in gas emissions is due to gas re-equilibration at low pressure and fixed f O 2. Sulfur budget considerations indicate that the majority of S injected into the systems is emitted as gas, which is therefore representative of the magmatic S isotope composition. The composition of the Masaya gas plume (+4.8‰) cannot be explained by fractionation effects but rather reflects recycling of high δ 34 S sulfate through the subduction zone.
    Digitale ISSN: 1525-2027
    Thema: Chemie und Pharmazie , Geologie und Paläontologie , Physik
    Publiziert von Wiley im Namen von American Geophysical Union (AGU).
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Publikationsdatum: 2011-01-12
    Beschreibung: Aerobic anoxygenic phototrophic (AAP) bacteria are photoheterotrophic prokaryotes able to use both light and organic substrates for energy production. They are widely distributed in coastal and oceanic environments and may contribute significantly to the carbon cycle in the upper ocean. To better understand questions regarding links between the ecology of these photoheterotrophic bacteria and the trophic status of water masses, we examined their horizontal and vertical distribution and the effects of nutrient additions on their growth along an oligotrophic gradient in the Mediterranean Sea. Concentrations of bacteriochlorophyll-a (BChl-a) and AAP bacterial abundance decreased from the western to the eastern basins of the Mediterranean Sea and were linked with concentrations of chlorophyll-a, nutrient and dissolved organic carbon. Inorganic nutrient and glucose additions to surface seawater samples along the oligotrophic gradient revealed that AAP bacteria were nitrogen- and carbon-limited in the ultra-oligotrophic eastern basin. The intensity of the AAP bacterial growth response generally differed from that of the total bacterial growth response. BChl-a quota of AAP bacterial communities was significantly higher in the eastern basin than in the western basin, suggesting that reliance on phototrophy varied along the oligotrophic gradient and that nutrient and/or carbon limitation favors BChl-a synthesis.
    Print ISSN: 1810-6277
    Digitale ISSN: 1810-6285
    Thema: Biologie , Geologie und Paläontologie
    Publiziert von Copernicus im Namen von European Geosciences Union.
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Publikationsdatum: 2011-04-20
    Beschreibung: Aerobic anoxygenic phototrophic (AAP) bacteria are photoheterotrophic prokaryotes able to use both light and organic substrates for energy production. They are widely distributed in coastal and oceanic environments and may contribute significantly to the carbon cycle in the upper ocean. To better understand questions regarding links between the ecology of these photoheterotrophic bacteria and the trophic status of water masses, we examined their horizontal and vertical distribution and the effects of nutrient additions on their growth along an oligotrophic gradient in the Mediterranean Sea. Concentrations of bacteriochlorophyll-a (BChl-a) and AAP bacterial abundance decreased from the western to the eastern basin of the Mediterranean Sea and were linked with concentrations of chlorophyll-a, nutrient and dissolved organic carbon. Inorganic nutrient and glucose additions to surface seawater samples along the oligotrophic gradient revealed that AAP bacteria were nitrogen- and carbon-limited in the ultraoligotrophic eastern basin. The intensity of the AAP bacterial growth response generally differed from that of the total bacterial growth response. BChl-a quota of AAP bacterial communities was significantly higher in the eastern basin than in the western basin, suggesting that reliance on phototrophy varied along the oligotrophic gradient and that nutrient and/or carbon limitation favors BChl-a synthesis.
    Print ISSN: 1726-4170
    Digitale ISSN: 1726-4189
    Thema: Biologie , Geologie und Paläontologie
    Publiziert von Copernicus im Namen von European Geosciences Union.
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...