ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2016-06-28
    Description: Sea-level rise (SLR) is one of the most conspicuous examples of the environmental impact of recent climate change. Since SLR rates are not uniform around the planet, local and regional data are needed for proper adaptation plans. 210 Pb-dated sediment cores were analyzed to determine the trends of sediment accretion rates (SARs) at three tropical saltmarshes in the Estero de Urias lagoon (Gulf of California, Mexico), in order to estimate the SLR trends during the past ~100 years, under the assumption that these ecosystems accrete at a similar rate to SLR. A chemometric approach, including multivariate statistical analysis (factor analysis) of geochemical data (including 13 C; 15 N; C/N ratios; and Br, Na, and Cl as proxies for marine transgression) was used to identify the marine transgression in the sediment records. Based on core geochemistry, only one of the three cores provided a long-term record attributable to marine transgression. SLR trends, estimated from SARs, showed increasing values, from a minimum of 0.73 ± 0.03 mm yr –1 at the beginning of the 20th century and up to 3.87 ± 0.12 mm yr –1 during the period 1990–2012. The estimated SLR trend between 1950 and 1970 was comparable to the tide gauge records in Mazatlan City for the same period. Results showed the caveats and strengths of this methodology to reconstruct decadal SLR trends from the sedimentary record, which can be used to estimate long-term SLR trends worldwide in regions where monitoring data are scarce or absent.
    Print ISSN: 0959-6836
    Electronic ISSN: 1477-0911
    Topics: Geography , Geosciences
    Published by Sage
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2012-04-01
    Description: The Virulundo carbonatite in Angola is one of the largest in the world and contains pyrochlore as an accessory mineral in all of the carbonatite units (calciocarbonatites, ferrocarbonatites, carbonatite breccias and trachytoids). The primary magmatic pyrochlore is fluorine dominant and typically contains about equal molar quantities of Ca and Na at the A site. High-temperature hydrothermal processes have resulted in the pseudomorphic replacement of the primary pyrochlore by a second generation of pyrochlore with less F and Na. Low-temperature hydrothermal replacement of the first and second generation pyrochlore, associated with quartz-carbonate-fluorite vein formation in the carbonatite, has produced a third generation of pyrochlore, with a high Sr content. The Sr appears to have been released by low-temperature hydrothermal replacement of the primary magmatic carbonates. Finally, supergene alteration processes have produced late-stage carbonates, goethite, hollandite and rare earth element (REE) minerals (mainly synchysite-(Ce), britholite-(Ce), britholite-(La), cerite-(Ce)). Cerium separated from the other REEs in oxidizing conditions and Ce4+ was incorporated into a late generation of supergene pyrochlore, which is strongly enriched in Ba and strongly depleted in Ca and Na.
    Print ISSN: 0026-461X
    Electronic ISSN: 1471-8022
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2012-04-01
    Description: The Virulundo carbonatite in Angola is one of the largest in the world and contains pyrochlore as an accessory mineral in all of the carbonatite units (calciocarbonatites, ferrocarbonatites, carbonatite breccias and trachytoids). The primary magmatic pyrochlore is fluorine dominant and typically contains about equal molar quantities of Ca and Na at the A site. High-temperature hydrothermal processes have resulted in the pseudomorphic replacement of the primary pyrochlore by a second generation of pyrochlore with less F and Na. Low-temperature hydrothermal replacement of the first and second generation pyrochlore, associated with quartz-carbonate-fluorite vein formation in the carbonatite, has produced a third generation of pyrochlore, with a high Sr content. The Sr appears to have been released by low-temperature hydrothermal replacement of the primary magmatic carbonates. Finally, supergene alteration processes have produced late-stage carbonates, goethite, hollandite and rare earth element (REE) minerals (mainly synchysite-(Ce), britholite-(Ce), britholite-(La), cerite-(Ce)). Cerium separated from the other REE s in oxidizing conditions and Ce4+ was incorporated into a late generation of supergene pyrochlore, which is strongly enriched in Ba and strongly depleted in Ca and Na.
    Print ISSN: 0026-461X
    Electronic ISSN: 1471-8022
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...