ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (2)
  • 1
    Publication Date: 2021-07-21
    Description: Many cities across China are investing in subway projects, resulting in much subway construction activity, which has experienced a surge over the past decade. The construction activities inevitably cause a dramatic quantity of subway‐related excavated soil and rock (ESR). How to manage it with minimal environmental impact on our urban ecosystem remains an open question. The present study evaluates global warming potential (GWP, expressed by CO2 eq) from different ESR recycling and landfilling scenarios via a life cycle assessment (LCA) model based on primary field investigation combined with the LCA software database. The study results illustrate that recycling ESR can significantly reduce greenhouse gas emissions. In comparison with traditional construction materials, the scenarios found that a cumulative amount of 1.1 to 1.5 million tonnes (Mt) of CO2 eq emissions could have been mitigated by using ESR generated between 2010 and 2018 to produce baking‐free bricks and recycled baked brick. Using cost–benefit analysis, potential economic benefits from recycled sand and baking‐free bricks are found to reach US$9 million annually. The findings of this study could provide better recycling options for ESR‐related stakeholders. It is important to mention that there still is much work to be done before this recycling work can be popularized in China. Integr Environ Assess Manag 2021;17:639–650. © 2020 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals LLC on behalf of Society of Environmental Toxicology & Chemistry (SETAC)
    Description: KEY POINTS: This study focuses on the global warming potential (GWP) assessment of excavated soil and rock (ESR). Cumulative CO2 mitigation potential by recycling ESR was calculated. More than US$8 million profit could have been reached annually between 2006 and 2018. Cumulative CO2 mitigation potential could have been as high as 1.5 Mt from 2010 to 2018.
    Keywords: 333.7 ; Excavated soil and rock (ESR) ; Recycling ; CO2 mitigation ; Life cycle assessment ; Cost–benefit analysis
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-06-28
    Description: The use of formal numerical optimization methods for the design of gears is investigated. To achieve this, computer codes were developed for the analysis of spur gears and spiral bevel gears. These codes calculate the life, dynamic load, bending strength, surface durability, gear weight and size, and various geometric parameters. It is necessary to calculate all such important responses because they all represent competing requirements in the design process. The codes developed here were written in subroutine form and coupled to the COPES/ADS general purpose optimization program. This code allows the user to define the optimization problem at the time of program execution. Typical design variables include face width, number of teeth and diametral pitch. The user is free to choose any calculated response as the design objective to minimize or maximize and may impose lower and upper bounds on any calculated responses. Typical examples include life maximization with limits on dynamic load, stress, weight, etc. or minimization of weight subject to limits on life, dynamic load, etc. The research codes were written in modular form for easy expansion and so that they could be combined to create a multiple reduction optimization capability in future.
    Keywords: MECHANICAL ENGINEERING
    Type: NASA-CR-4201 , E-4459 , NAS 1.26:4201
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...