ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2013-08-31
    Description: We propose sending a balloon-borne UV photometer sensor package to measure atmospheric ozone on Mars, and this package could be a Discovery Program sensor candidate. Past measurements of ozone on Mars are highly uncertain, perhaps a factor of 3 or so uncertain, due primarily to interference and masking by cloud and dust. In-situ balloon measurements would avoid these problems, and would provide 'ground truth' which remote sensing techniques cannot. We have explored this approach to measure ozone abundance in the terrestrial stratosphere with a balloon-borne UV absorption photometer. Atmospheric pressures and temperatures and ozone concentrations near the surface of Mars are similar to those in the terrestrial stratosphere.
    Keywords: LUNAR AND PLANETARY EXPLORATION
    Type: Reanalysis of Mariner 9 UV Spectrometer Data for Ozone, Cloud, and Dust Abundances, and Their Interaction Over Climate Timescales; 1 p
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-18
    Description: On July 13, 2002, a widespread, thin tropopause cirrus layer occurred over the Florida region. This cloud was observed in great detail with the CRYSTAL-FACE instrumentation, including in-situ measurements with the WB-57 aircraft. We use this cloud case study to evaluate the physical processes controlling the formation and evolution of tropopause cirrus layers. Microphysics indicate ice crystal diameters in the cloud layer ranged from about 7 to 40 um, and the peak number mode was about 10-25 um. In-situ water vapor and temperature measurements in the cloud indicated supersaturation with respect to ice throughout, with ice saturation ratios as large as 1.8. TRajectory analysis shows that the air sampled near the tropopause on this day generally came from the north and cooled considerable during the previous days.Examination of visible satellite imagery indicates that the cloud layer formation was, in general, not simply left over ice from convectively generated anvil cirrus.
    Keywords: Meteorology and Climatology
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-13
    Description: We present measurements of lower statospheric water vapor obtained during the Stratospheric Phototchemistry, Aerosols and Dynamics Expedition (SPADE) mission with a new high precision, fast response, Lyman-alpha hygrometer. The H2O data show a distinct seasonal cycle. For air that recently entered the statosphere, data collected during the fall show much more water vapor than data from the spring. Fast quasi-horizontal mixing causes compact relationships between water and N2O to be established on relatively short time scales. The measurements are consistent with horizontal mixing times of a few months or less. Vertical mixing appears to cause the seasonal variations in water vapor to propagate up to levels corresponding to air that has been in the stratosphere approximately one year.
    Keywords: GEOPHYSICS
    Type: Geophysical Research Letters (ISSN 0094-8276); 21; 23; p. 2559-2562
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-13
    Description: In an effort to better constrain atmospheric water vapor mixing ratios and to understand the discrepancies between different measurements of water vapor in the stratosphere and troposphere, we have carefully examined data from the Harvard Lyman-alpha photofragment fluorescence hygrometer, which has flown on the NASA ER-2 aircraft from 1992 through 1998. The instrument is calibrated in the laboratory before and after each deployment, and the calibration is checked by direct absorption measurements in the troposphere. On certain flights, the ER-2 flew level tracks during which water vapor varied by up to 80 ppmv, under nearly constant atmospheric conditions. These flights provide a stringent test of our calibration via direct absorption and indicate agreement to within 3%. During the 1997 Photochemistry of Ozone Loss in the Arctic Region In Summer (POLARIS) mission, our Lyman-alpha instrument was compared with a new diode laser hygrometer from the Jet Propulsion Laboratory. Overall agreement was 5% during the June/July deployment and 1% for potential temperatures of 490 to 540 K. The accuracy of our instrument is shown to be +/-5 %, with an additional offset of at most 0.1 ppmv. Data from this instrument, combined with simultaneous measurements of CH4, and H2, are therefore ideal for studies of the hydrogen budget of the lower stratosphere.
    Keywords: Geophysics
    Type: Paper-1998JD100110 , Journal of Geophysical Research (ISSN 0148-0227); 104; D7; 8183-8189
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-19
    Description: We use in situ measurements of water vapor (H2O), ozone (O3), carbon dioxide (CO2), carbon monoxide (CO), nitric oxide (NO), and total reactive nitrogen (NO(y)) obtained during the CRYSTAL-FACE campaign in July 2002 to study summertime transport in the subtropical lowermost stratosphere. We use an objective methodology to distinguish the latitudinal origin of the sampled air masses despite the influence of convection, and we calculate backward trajectories to elucidate their recent geographical history. The methodology consists of exploring the statistical behavior of the data by performing multivariate clustering and agglomerative hierarchical clustering calculations, and projecting cluster groups onto principal component space to identify air masses of like composition and hence presumed origin. The statistically derived cluster groups are then examined in physical space using tracer-tracer correlation plots. Interpretation of the principal component analysis suggests that the variability in the data is accounted for primarily by the mean age of air in the stratosphere, followed by the age of the convective influence, and lastly by the extent of convective influence, potentially related to the latitude of convective injection [Dessler and Sherwuud, 2004]. We find that high-latitude stratospheric air is the dominant source region during the beginning of the campaign while tropical air is the dominant source region during the rest of the campaign. Influence of convection from both local and non-local events is frequently observed. The identification of air mass origin is confirmed with backward trajectories, and the behavior of the trajectories is associated with the North American monsoon circulation.
    Keywords: Geosciences (General)
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-12
    Description: We use in situ measurements of water vapor (H2O), ozone (O3), carbon dioxide (CO2), carbon monoxide (CO), nitric oxide (NO), and total reactive nitrogen (NOy) obtained during the CRYSTAL-FACE campaign in July 2002 to study summertime transport in the subtropical lowermost stratosphere. We use an objective methodology to distinguish the latitudinal origin of the sampled air masses despite the influence of convection, and we calculate backward trajectories to elucidate their recent geographical history. The methodology consists of exploring the statistical behavior of the data by performing multivariate clustering and agglomerative hierarchical clustering calculations and projecting cluster groups onto principal component space to identify air masses of like composition and hence presumed origin. The statistically derived cluster groups are then examined in physical space using tracer-tracer correlation plots. Interpretation of the principal component analysis suggests that the variability in the data is accounted for primarily by the mean age of air in the stratosphere, followed by the age of the convective influence, and last by the extent of convective influence, potentially related to the latitude of convective injection (Dessler and Sherwood, 2004). We find that high-latitude stratospheric air is the dominant source region during the beginning of the campaign while tropical air is the dominant source region during the rest of the campaign. Influence of convection from both local and nonlocal events is frequently observed. The identification of air mass origin is confirmed with backward trajectories, and the behavior of the trajectories is associated with the North American monsoon circulation.
    Keywords: Meteorology and Climatology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-13
    Description: On July 13, 2002 a widespread, subvisible tropopause cirrus layer occurred over the Florida region. This cloud was observed in great detail with the NASA Cirrus Regional Study of Tropical Anvils and Cirrus Layers-Florida Area Cirrus Experiment (CRYSTAL-FACE) instrumentation, including in situ measurements with the WB-57 aircraft. In this paper, we use the 13 July cloud as a case study to evaluate the physical processes controlling the formation and evolution of tropopause cirrus layers. Microphysics measurements indicate that ice crystal diameters in the cloud layer ranged from about 7 to 50 microns, and the peak number mode was about 10-25 microns. In situ water vapor and temperature measurements in the cloud indicated supersaturation with respect to ice throughout, with ice saturation ratios as large as 1.8. Even when the ice surface area density was as high as about 500 sq microns/cu cm, ice supersaturations of 20-30% were observed. Trajectory analysis shows that the air sampled near the tropopause on this day generally came from the north and cooled considerably during the previous few days. Examination of infrared satellite imagery along air parcel back trajectories from the WB-57 flight track indicates that the tropopause cloud layer formation was, in general, not simply left over ice from recently generated anvil cirrus. Simulations of cloud formation using time-height curtains of temperature along the trajectory paths show that the cloud could have formed in situ near the tropopause as the air was advected into the south Florida region and cooled to unusually low temperatures. If we assume a high threshold for ice nucleation via homogeneous freezing of aqueous sulfate aerosols, the model reproduces the observed cloud structure, ice crystal size distributions, and ice supersaturation statistics. Inclusion of observed gravity wave temperature perturbations in the simulations is essential to reproduce the observed cloud properties. Without waves, crystal number densities are too low, crystal sizes are too large, and the crystals fall out too fast, leaving very little cloud persisting at the end of the simulations. In the cloud simulations, coincidence of high supersaturations and high surface areas can be produced by either recent nucleation or sedimentation of crystals into supersaturated layers. The agreement between model results and observed supersaturations is improved somewhat if we assume that the steady state relative humidity within cirrus at T〈200 K is enhanced by about 30%. The WB-57 measurements and the model results suggest that the cloud layer irreversibly dehydrated air near the tropopause.
    Keywords: Meteorology and Climatology
    Type: Journal of Geophysical Research; 110; D03208
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-13
    Description: Convective systems are an important mechanism in the transport of boundary layer air into the upper troposphere. The Cirrus Regional Study of Tropical Anvils and Cirrus Layers-Florida Area Cirrus Experiment (CRYSTAL-FACE) campaign, in July 2002, was developed as a comprehensive atmospheric mission to improve knowledge of subtropical cirrus systems and their roles in regional and global climate. In situ measurements of carbon monoxide (CO), water vapor (H2Ov), and total water (H2Ot) aboard NASA's WB-57F aircraft and CO aboard the U.S. Navy's Twin Otter aircraft were obtained to study the role of convective transport. Three flights sampled convective outflow on 11, 16 and 29 July found varying degrees of CO enhancement relative to the free troposphere. A cloud-resolving model used the in situ observations and meteorological fields to study these three systems. Several methods of filtering the observations were devised here using ice water content, relative humidity with respect to ice, and particle number concentration as a means to statistically sample the model results to represent the flight tracks. A weighted histogram based on ice water content observations was then used to sample the simulations for the three flights. In addition, because the observations occurred in the convective outflow cirrus and not in the storm cores, the model was used to estimate the maximum CO within the convective systems. In general, anvil-level air parcels contained an estimated 20-40% boundary layer air in the analyzed storms.
    Keywords: Meteorology and Climatology
    Type: Journal of Geophysical Research (ISSN 0148-0227); 111
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-10
    Description: This study derives effective ice particle densities from data collected from the NASA WB-57F aircraft near the tops of anvils during the Cirrus Regional Study of Tropical Anvils and Cirrus Layers (CRYSTAL) Florida Area Cirrus Experiment (FACE) in southern Florida in July 2002. The effective density, defined as the ice particle mass divided by the volume of an equivalent diameter liquid sphere, is obtained for particle populations and single sizes containing mixed particle habits using measurements of condensed water content and particle size distributions. The mean effective densities for populations decrease with increasing slopes of the gamma size distributions fitted to the size distributions. The population-mean densities range from near 0.91 g/cu m to 0.15 g/cu m. Effective densities for single sizes obey a power-law with an exponent of about -0.55, somewhat less steep than found from earlier studies. Our interpretations apply to samples where particle sizes are generally below 200-300 microns in maximum dimension because of probe limitations.
    Keywords: Meteorology and Climatology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-12
    Description: An instrument developed for high-resolution daytime measurements of water vapor in the stratosphere using the technique of photofragment fluorescence is examined. A detailed description of all aspects of the instrument, as well as the results of its first two flights, are presented. The main areas of concern were optical baffling, cryogen transfer, water vapor measurement without contamination, and a dual path absorption measurement. Results of the second flight test indicate that the problems of instrument and gondola contamination, identified in the first flight test, were solved. A signal-to-noise ratio of about 50:1 for 10 sec of averaging throughout the stratosphere is achieved, as well as an altitude resolution of better than 100 m.
    Keywords: INSTRUMENTATION AND PHOTOGRAPHY
    Type: Review of Scientific Instruments (ISSN 0034-6748); 61; 1413-143
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...