ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (3)
  • 1
    Publication Date: 2022-12-21
    Description: Rapid and continuous analysis of radiocarbon (14C) concentration in carbonate samples at spatial resolution down to 100 µm has been made possible with the new LA-AMS (laser ablation accelerator mass spectrometry) technique. This novel approach can provide radiocarbon data at a spatial resolution similar to that of stable carbon (C) isotope measurements by isotope ratio mass spectrometry of micromilled samples and, thus, can help to interpret δ13C signatures, which otherwise are difficult to understand due to numerous processes contributing to changes in the C-isotope ratio. In this work, we analyzed δ13C and 14C on the Holocene stalagmite SPA 127 from the high-alpine Spannagel Cave (Austria). Both proxies respond in a complex manner to climate variability. Combined stable carbon and radiocarbon profiles allow three growth periods characterized by different δ13C signatures to be identified: (i) the period 8.5 to 8.0 ka is characterized by relatively low δ13C values with small variability combined with a comparably high radiocarbon reservoir effect (expressed as dead carbon fraction, dcf) of around 60 %. This points towards C contributions of host rock dissolution and/or from an “old” organic matter (OM) reservoir in the karst potentially mobilized due to the warm climatic conditions of the early Holocene. (ii) Between 8 and 3.8 ka there was a strong variability in δ13C with values ranging from −8 ‰ to +1 ‰ and a generally lower dcf. The δ13C variability is most likely caused by changes in C exchange between cave air CO2 and dissolved inorganic carbon in drip water in the cave, which are induced by reduced drip rates as derived from reduced stalagmite growth rates. Additionally, the lower dcf indicates that the OM reservoir contributed less to stalagmite growth in this period possibly as a result of reduced meteoric precipitation or because it was exhausted. (iii) In the youngest section between 3.8 and 2.4 ka, comparably stable and low δ13C values, combined with an increasing dcf reaching up to 50 % again, hint towards a contribution of an aged OM reservoir in the karst. This study reveals the potential of combining high-resolution 14C profiles in speleothems with δ13C records in order to disentangle climate-related C dynamics in karst systems.Rapid and continuous analysis of radiocarbon (14C) concentration in carbonate samples at spatial resolution down to 100 µm has been made possible with the new LA-AMS (laser ablation accelerator mass spectrometry) technique. This novel approach can provide radiocarbon data at a spatial resolution similar to that of stable carbon (C) isotope measurements by isotope ratio mass spectrometry of micromilled samples and, thus, can help to interpret δ13C signatures, which otherwise are difficult to understand due to numerous processes contributing to changes in the C-isotope ratio. In this work, we analyzed δ13C and 14C on the Holocene stalagmite SPA 127 from the high-alpine Spannagel Cave (Austria). Both proxies respond in a complex manner to climate variability. Combined stable carbon and radiocarbon profiles allow three growth periods characterized by different δ13C signatures to be identified: (i) the period 8.5 to 8.0 ka is characterized by relatively low δ13C values with small variability combined with a comparably high radiocarbon reservoir effect (expressed as dead carbon fraction, dcf) of around 60 %. This points towards C contributions of host rock dissolution and/or from an “old” organic matter (OM) reservoir in the karst potentially mobilized due to the warm climatic conditions of the early Holocene. (ii) Between 8 and 3.8 ka there was a strong variability in δ13C with values ranging from −8 ‰ to +1 ‰ and a generally lower dcf. The δ13C variability is most likely caused by changes in C exchange between cave air CO2 and dissolved inorganic carbon in drip water in the cave, which are induced by reduced drip rates as derived from reduced stalagmite growth rates. Additionally, the lower dcf indicates that the OM reservoir contributed less to stalagmite growth in this period possibly as a result of reduced meteoric precipitation or because it was exhausted. (iii) In the youngest section between 3.8 and 2.4 ka, comparably stable and low δ13C values, combined with an increasing dcf reaching up to 50 % again, hint towards a contribution of an aged OM reservoir in the karst. This study reveals the potential of combining high-resolution 14C profiles in speleothems with δ13C records in order to disentangle climate-related C dynamics in karst systems.Rapid and continuous analysis of radiocarbon (14C) concentration in carbonate samples at spatial resolution down to 100 µm has been made possible with the new LA-AMS (laser ablation accelerator mass spectrometry) technique. This novel approach can provide radiocarbon data at a spatial resolution similar to that of stable carbon (C) isotope measurements by isotope ratio mass spectrometry of micromilled samples and, thus, can help to interpret δ13C signatures, which otherwise are difficult to understand due to numerous processes contributing to changes in the C-isotope ratio. In this work, we analyzed δ13C and 14C on the Holocene stalagmite SPA 127 from the high-alpine Spannagel Cave (Austria). Both proxies respond in a complex manner to climate variability. Combined stable carbon and radiocarbon profiles allow three growth periods characterized by different δ13C signatures to be identified: (i) the period 8.5 to 8.0 ka is characterized by relatively low δ13C values with small variability combined with a comparably high radiocarbon reservoir effect (expressed as dead carbon fraction, dcf) of around 60 %. This points towards C contributions of host rock dissolution and/or from an “old” organic matter (OM) reservoir in the karst potentially mobilized due to the warm climatic conditions of the early Holocene. (ii) Between 8 and 3.8 ka there was a strong variability in δ13C with values ranging from −8 ‰ to +1 ‰ and a generally lower dcf. The δ13C variability is most likely caused by changes in C exchange between cave air CO2 and dissolved inorganic carbon in drip water in the cave, which are induced by reduced drip rates as derived from reduced stalagmite growth rates. Additionally, the lower dcf indicates that the OM reservoir contributed less to stalagmite growth in this period possibly as a result of reduced meteoric precipitation or because it was exhausted. (iii) In the youngest section between 3.8 and 2.4 ka, comparably stable and low δ13C values, combined with an increasing dcf reaching up to 50 % again, hint towards a contribution of an aged OM reservoir in the karst. This study reveals the potential of combining high-resolution 14C profiles in speleothems with δ13C records in order to disentangle climate-related C dynamics in karst systems.
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2023-08-01
    Description: During the last deglaciation, the opposing patterns of atmospheric CO2 and radiocarbon activities (Δ14C) suggest the release of 14C-depleted CO2 from old carbon reservoirs. Although evidences point to the deep Pacific as a major reservoir of this 14C-depleted carbon, its extent and evolution still need to be constrained. Here we use sediment cores retrieved along a South Pacific transect to reconstruct the spatio-temporal evolution of Δ14C over the last 30,000 years. In ∼2,500–3,600 m water depth, we find 14C-depleted deep waters with a maximum glacial offset to atmospheric 14C (ΔΔ14C=−1,000‰). Using a box model, we test the hypothesis that these low values might have been caused by an interaction of aging and hydrothermal CO2 influx. We observe a rejuvenation of circumpolar deep waters synchronous and potentially contributing to the initial deglacial rise in atmospheric CO2. These findings constrain parts of the glacial carbon pool to the deep South Pacific.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2021-11-03
    Description: In Antarctic and Subantarctic environments, 14C-based age determination is often challenging due to unknown reservoir effects, low organic carbon contents of sediments, and high contributions of petrogenic (14C-free) carbon in ice marginal settings. In this study, we evaluate possible benefits and challenges of compound-specific radiocarbon analysis (CSRA) as a tool for age determination of marine Antarctic and Subantarctic sediment sequences. We present a comprehensive data set of 14C ages obtained on bulk organic carbon, carbonates, and on fatty acids (FA) from three coastal marine sediment cores from Subantarctic South Georgia and East Antarctica. Low molecular weight (LMW) FA represent the least 14C-depleted fraction, indicating that the phytoplankton-derived compounds can be a means of dating sediments. In contrast, vascular plant-derived high molecular weight FA are systematically depleted in 14C relative to the low molecular weight homologues, reflecting processes such as soil formation/erosion in the catchment. Comparative age-depth models show significant differences, depending on the material used for the respective models. While the land plant-derived FA may lead to an overestimation of the actual sediment age, LMW FA reveal complex aquatic reservoir effects. Bulk sedimentary organic carbon 14C ages likely provide appropriate age estimates in settings with low petrogenic carbon input in the Antarctic, whereas CSRA has the potential to produce improved age control in settings with high contributions of petrogenic carbon.
    Keywords: 551 ; Antarctica ; marine sediments ; compound‐specific radiocarbon analysis (CSRA)
    Language: English
    Type: map
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...