ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (1)
Collection
Years
  • 1
    Publication Date: 2019-08-03
    Description: Data from hyperspectral infrared sounders are routinely ingested worldwide by National Weather Centers (NWCs). The cloud-free fraction of this data is used for initializing forecasts which include profiles of temperature, water vapor, water cloud and ice cloud profiles on a global grid. Although the data from these sounders are sensitive to the vertical distribution of ice and liquid water in clouds, this information is not fully utilized. In the future, this information could be used for validating clouds in NWC models and for initializing forecasts. We evaluate how well the calculated radiances from hyperspectral Radiative Transfer Models (RTMs) compare to cloudy radiances observed by AIRS and to one another. Vertical profiles of the clouds, temperature and water vapor from ECMWF (European Center for Medium-range Weather Forecasting) were used as input for the RTMs. For non-frozen ocean day and night data, the histograms derived from the calculations by several RTMs at 900 cm(exp -1)have a better than 0.95 correlation with the histogram derived from the AIRS observations, with a bias relative to AIRS of typically less than 2 K. Differences in the cloud physics and cloud overlap assumptions result in little bias between the RTMs, but the standard deviation of the differences ranges from 6 to 12 K. Results at 2616 cm(exp -1) at night are reasonably consistent with results at 900 cm(exp -1). Except for RTMs which use full scattering calculations, the bias and histogram correlations at 2616 cm(exp -1) are inferior to those at 900 cm(exp -1) for daytime calculations.
    Keywords: Meteorology and Climatology
    Type: NF1676L-29583 , Journal of Geophysical Research: Atmospheres (ISSN 2169-897X) (e-ISSN 2169-8996); 123; 11; 6142-6157
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...