ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (7)
  • 1
    Publication Date: 2011-08-24
    Description: The present study was designed to validate our noninvasive ultrasonic technique (pulse phase locked loop: PPLL) for measuring intracranial pressure (ICP) waveforms. The technique is based upon detecting skull movements which are known to occur in conjunction with altered intracranial pressure. In bench model studies, PPLL output was highly correlated with changes in the distance between a transducer and a reflecting target (R2 = 0.977). In cadaver studies, transcranial distance was measured while pulsations of ICP (amplitudes of zero to 10 mmHg) were generated by rhythmic injections of saline. Frequency analyses (fast Fourier transformation) clearly demonstrate the correspondence between the PPLL output and ICP pulse cycles. Although theoretically there is a slight possibility that changes in the PPLL output are caused by changes in the ultrasonic velocity of brain tissue, the decreased amplitudes of the PPLL output as the external compression of the head was increased indicates that the PPLL output represents substantial skull movement associated with altered ICP. In conclusion, the ultrasound device has sufficient sensitivity to detect transcranial pulsations which occur in association with the cardiac cycle. Our technique makes it possible to analyze ICP waveforms noninvasively and will be helpful for understanding intracranial compliance and cerebrovascular circulation.
    Keywords: Life Sciences (General)
    Type: Acta neurochirurgica. Supplementum (ISSN 0065-1419); Volume 71; 66-9
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2011-08-24
    Description: It is believed that intracranial pressure (ICP) may be elevated in microgravity because a fluid shift toward the head occurs due to loss of gravitational blood pressures. Elevated ICP may contribute to space adaptation syndrome, because as widely observed in clinical settings, elevated ICP causes headache, nausea, and projectile vomiting, which are similar to symptoms of space adaptation syndrome. However, the hypothesis that ICP is altered in microgravity is difficult to test because of the invasiveness of currently-available techniques. We have developed a new ultrasonic technique, which allows us to record ICP waveforms noninvasively. The present study was designed to understand postural effects on ICP and assess the feasibility of our new device in future flight experiments.
    Keywords: Aerospace Medicine
    Type: Journal of gravitational physiology : a journal of the International Society for Gravitational Physiology (ISSN 1077-9248); Volume 5; 1; P39-40
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2016-06-07
    Description: Examples of diode laser (DL) random-modulation continuous wave (RM-CW) lidar measurements are reported. The ability of the measurement of the visibility, vertical aerosol profile, and the cloud ceiling height is demonstrated. Although the data shown here were all measured at night time, the daytime measurement is, of course, possible. For that purpose, accurate control of the laser frequency to the center frequency of a narrow band filter is required. Now a new system with a frequency control is under construction.
    Keywords: LASERS AND MASERS
    Type: NASA. Langley Research center 13th International Laser Radar Conference; 4 p
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2013-08-31
    Description: The Japan Meteorological Agency started the spectral observation of solar ultraviolet (UV) irradiance on 1 January 1990 at Tateno, Aerological Observatory in Tsukuba (35 deg N, 140 deg E). The observation has been carried out using the Brewer spectrophotometer for the wavelengths from 290 to 325 nm with a 0.5 nm interval every hour from 30 minutes before sunrise to 30 minutes after sunset throughout a year. Because of remarkable similarity within observed spectra, an observed spectrum can be expressed by a simple combination of a reference spectrum and two parameters expressing the deformation of the observed spectrum from the reference. By use of the relation between one of the deformation parameters and the total ozone simultaneously observed with the Dobson spectrophotometer, the possible increase of UV irradiance due to ozone depletion is estimated. For damaging UV, the irradiance possibly increases about 19 percent with the ozone depletion of 10 percent at noon throughout the year in the northern midlatitudes. DUV at noon on the summer solstice possibly increases about 5.6 percent with the ozone depletion of 10 m atm-cm for all latitudes in the Northern Hemisphere.
    Keywords: METEOROLOGY AND CLIMATOLOGY
    Type: NASA. Goddard Space Flight Center, Ozone in the Troposphere and Stratosphere, Part 2; p 657-662
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-18
    Description: Gravity alters local blood pressure within the body so that arterial pressures in the head and foot are lower and higher, respectively, than that at heart level. Furthermore, vascular responses to local alterations of arterial pressure are probably important to maintain orthostatic tolerance upon return to the Earth after space flight. However, it has been difficult to evaluate the body's arterial pressure gradient due to the lack of noninvasive technology. This study was therefore designed to investigate whether finger arterial pressure (FAP), measured noninvasively, follows a normal hydrostatic pressure gradient above and below heart level during upright posture and 30 deg head down tilt (HDT). Seven healthy subjects gave informed consent and were 19 to 52 years old with a height range of 158 to 181 cm. A Finapres device measured arterial pressure at different levels of the body by moving the hand from 36 cm below heart level (BH) to 72 cm above heart level (AH) in upright posture and from 36 cm BH to 48 cm AH during HDT in increments of 12 cm. Mean FAP creased by 85 mmHg transitioning from BH to AH in upright posture, and the pressure gradient calculated from hydrostatic pressure difference (rho(gh)) was 84 mmHg. In HDT, mean FAP decreased by 65 mmHg from BH to AH, and the calculated pressure gradient was also 65 mmHg. There was no significant difference between the measured FAP gradient and the calculated pressure gradient, although a significant (p = 0.023) offset was seen for absolute arterial pressure in upright posture. These results indicate that arterial pressure at various levels can be obtained from the blood pressure at heart level by calculating rho(gh) + an offset. The offset equals the difference between heart level and the site of measurement. In summary, we conclude that local blood pressure gradients can be measured by noninvasive studies of FAP.
    Keywords: Aerospace Medicine
    Type: American Society for Gravitational and Space Biology; Nov 19, 1997 - Nov 22, 1997; Washington, DC; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-18
    Description: Reduced orthostatic tolerance is commonly observed after space flight, occasionally causing presyncopal conditions. Although the cerebrovascular system may play an important role in presyncope, there have been few reports concerning cerebral hemodynamics during presyncope. The purpose of this study was to investigate cerebrovascular responses during presyncope induced by lower body negative pressure (LBNP). Seven healthy male volunteers were exposed to LBNP in steps of -10 mmHg every 3 min until presyncopal symptoms were detected. Blood pressure (BP) and heart rate (HR) were measured with a finger cuff. Cerebral tissue oxy- and deoxy- hemoglobin (Hb) concentrations were estimated using near infrared spectroscopy (NIRS). Cerebral blood flow (CBF) velocity at the middle cerebral artery was measured with Transcranial Doppler Sonography (TCD). We focused on the data during the 2 min before endpoint. BP marked a gradual decrease (91 to 86 mmHg from 2 min to 30 sec before endpoint), which was accelerated along with HR decrease during the final 30 sec (86 to 71 mmHg). Cerebral oxy-Hb concentration decreases as presyncope is approached while total-Hb concentration remains fairly constant. TCD reveals a decrease in the CBF velocity. The TCD and NIRS results suggest that CBF decreases along with the BP decrease. Cerebrovascular responses during presyncope are closely related to cardiovascular responses.
    Keywords: Aerospace Medicine
    Type: Aerospace Medicine Association Meeting; May 11, 1997 - May 15, 1997; Chicago, IL; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-13
    Description: Intracranial pressure (ICP) dynamics are important for understanding adjustments to altered gravity. Previous flight observations document significant facial edema during exposure to microgravity, which suggests that ICP is elevated during microgravity. However, there are no experimental results obtained during space flight, primarily due to the invasiveness of currently available techniques. We have developed and refined a noninvasive technique to measure intracranial pressure noninvasively. The technique is based upon detecting skull movements of a few micrometers in association with altered intracranial pressure. We reported that the PPLL technique has enough sensitivity to detect changes in cranial distance associated with the pulsation of ICP in cadavera. In normal operations, however, we place a transducer on the scalp. Thus, we cannot rule out the possibility that the PPLL technique picks up cutaneous pulsation. The purpose of the present study was therefore to show that the PPLL technique has enough sensitivity to detect changes in cranial distance associated with cardiac cycles in vivo.
    Keywords: Life Sciences (General)
    Type: Uchu seibutsu kagaku (ISSN 0914-9201); 12; 3; 270-1
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...