ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (7)
Collection
Years
  • 1
    Publication Date: 2019-07-13
    Description: The Be/X-ray binary A0535+26 showed a giant outburst in December 2009 that reached approximately 5.14 Crab in thc 15-50 keV range. Unfortunately, due to Sun constraints it could not be observed by most X-ray satellites. The outburst was preceded by four weaker outbursts associated with the periastron passage of the neutron star. The fourth of them, in August 2009, presented a peculiar double-peaked light curve, with a first peak lasting about 9 days that reached a (15- 50 keV) flux of 440 mCrab. The tl ux then decreased to less than 220 mCrab, and increased again reaching 440 mCrab around the periastron. The outburst was monitored with INTEGRAL, RXTE, and Suzaku TOO observations. One orbital period (approximately 111 days) after the 2009 giant outburst, a new and unexpectedly bright outburst took place (approximately 1.4Crab in the 15-50 keV range). It was monitored with TOO observations with INTEGRAL, RXTE, Suzaku, and Swift. First results of the spectral and timing analysis of these observations are presented. with a specific focus on the cyclotron lines present in thc system and its variation with the mass accretion rate.
    Keywords: Astrophysics
    Type: GSFC.CP.4730.2011 , 8th INTEGRAL Workshop "The Restless Gamma-ray"; Sep 27, 2011 - Sep 30, 2011; Dublin; Ireland
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-13
    Description: We present analysis of 4U 1626-67, a 7.7 s pulsar in a low-mass X-ray binary system, observed with the hard X-ray detector of the Japanese X-ray satellite Suzaku in 2006 March for a net exposure of ~88 ks. The source was detected at an average 10-60 keY flux of approx 4 x 10-10 erg / sq cm/ s. The phase-averaged spectrum is reproduced well by combining a negative and positive power-law times exponential cutoff (NPEX) model modified at approx 37 keY by a cyclotron resonance scattering feature (CRSF). The phase-resolved analysis shows that the spectra at the bright phases are well fit by the NPEX with CRSF model. On the other hand. the spectrum in the dim phase lacks the NPEX high-energy cutoff component, and the CRSF can be reproduced by either an emission or an absorption profile. When fitting the dim phase spectrum with the NPEX plus Gaussian model. we find that the feature is better described in terms of an emission rather than an absorption profile. The statistical significance of this result, evaluated by means of an F test, is between 2.91 x 10(exp -3) and 1.53 x 10(exp -5), taking into account the systematic errors in the background evaluation of HXD-PIN. We find that the emission profile is more feasible than the absorption one for comparing the physical parameters in other phases. Therefore, we have possibly detected an emission line at the cyclotron resonance energy in the dim phase.
    Keywords: Astronomy
    Type: GSFC.JA.7322.2012 , The Astrophysical Journal; 751; 1; 35
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-12
    Description: Seventeen accreting neutron star pulsars, mostly high mass X-ray binaries with half of them Be-type transients, are known to exhibit Cyclotron Resonance Scattering Features (CRSFs) in their X-ray spectra, with characteristic line energies from 10 to 60 keY. To date about two thirds of them, plus a few similar systems without known CRSFs, have been observed with Suzaku. We present an overview of results from these observations, including the discovery of a CRSF in the transient IA1118-61 and pulse phase resolved spectroscopy of OX 301-2. These observations allow for the determination of cyclotron line parameters to an unprecedented degree of accuracy within a moderate amount of observing time. This is important since these parameters vary - e.g., with orbital phase, pulse phase, or luminosity - depending on the geometry of the magnetic field of the pulsar and the properties of the accretion column at the magnetic poles. We briefly introduce a spectral model for CRSFs that is currently being developed and that for the first time is based on these physical properties. In addition to cyclotron line measurements, selected highlights from the Suzaku analyses include dip and flare studies, e.g., of 4U 1907+09 and Vela X-I, which show clumpy wind effects (like partial absorption and/or a decrease in the mass accretion rate supplied by the wind) and may also display magnetospheric gating effects.
    Keywords: Astrophysics
    Type: GSFC.JA.5666.2011
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-13
    Description: We present Interplanetary Network (IPN) data for the gamma-ray bursts in the first Fermi Gamma-Ray BurstMonitor (GBM) catalog. Of the 491 bursts in that catalog, covering 2008 July 12 to 2010 July 11, 427 wereobserved by at least one other instrument in the nine-spacecraft IPN. Of the 427, the localizations of 149 could beimproved by arrival time analysis (or triangulation). For any given burst observed by the GBM and one otherdistant spacecraft, triangulation gives an annulus of possible arrival directions whose half-width varies betweenabout 0. 4 and 32, depending on the intensity, time history, and arrival direction of the burst, as well as the distancebetween the spacecraft. We find that the IPN localizations intersect the 1 GBM error circles in only 52 of thecases, if no systematic uncertainty is assumed for the latter. If a 6 systematic uncertainty is assumed and added inquadrature, the two localization samples agree about 87 of the time, as would be expected. If we then multiply theresulting error radii by a factor of three, the two samples agree in slightly over 98 of the cases, providing a goodestimate of the GBM 3 error radius. The IPN 3 error boxes have areas between about 1 arcmin2 and 110 deg2,and are, on the average, a factor of 180 smaller than the corresponding GBM localizations. We identify two burstsin the IPNGBM sample that did not appear in the GBM catalog. In one case, the GBM triggered on a terrestrialgamma flash, and in the other, its origin was given as uncertain. We also discuss the sensitivity and calibration ofthe IPN.
    Keywords: Astrophysics
    Type: GSFC-E-DAA-TN12083 , The Astrophysical Journal Supplement Series (ISSN 0067-0049) (e-ISSN 1538-4365); 207; 2
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-12
    Description: We report on our serendipitous pre-discovery detection and detailed follow-up of the broad-lined Type Ic supernova SN2010ay at z approx 0.067 imaged by the Pan-STARRS1 3pi survey just approx 4 days after explosion. Combining our photometric observations with those available in the literature, we estimate the explosion date and the peak luminosity of the SN, M(sub R) approximately equals 20.2 mag, significantly brighter than known GRB-SNe and one of the most luminous SNe Ibc ever discovered. We measure the photospheric expansion velocity of the explosion from our spectroscopic follow-up observations, v(sub ph) approximately equals 19.2 X 10 (exp 3) km/s at approx 40 days after explosion. In comparison with other broad-lined SNe, the characteristic velocity of SN2010ay is 2 - 5 X higher and similar to the measurements for GRB-SNe at comparable epochs. Moreover the velocity declines two times slower than other SNe Ic-BL and GRB-SNe. Assuming that the optical emission is powered by radioactive decay, the peak magnitude implies the synthesis of an unusually large mass of Ni-56, M(sub Ni) = 0.9(+0.1/-0.1) solar mass. Our modeling of the light-curve points to a total ejecta mass, M(sub ej) approx 4.7 Solar Mass, and total kinetic energy, E(sub K,51) approximately equals 11. Thus the ratio of M(sub Ni) to M(sub ej) is at least twice as large for SN2010ay than in GRB-SNe and may indicate an additional energy reservoir. We also measure the metallicity (log(O/H) + 12 = 8.19) of the explosion site within the host galaxy using a high S/N optical spectrum. Our abundance measurement places this SN in the low-metallicity regime populated by GRB-SNe, and approx 0.2(0.5) dex lower than that typically measured for the host environments of normal (broad-lined) Ic supernovae. Despite striking similarities to the recent GRB-SN100316D/2010bh, we show that gamma-ray observations rule out an associated GRB with E(sub gamma) approx 〈 6 X 10(exp 48) erg (25-150 keV). Similarly, our deep radio follow-up observations with the Expanded Very Large Array rule out relativistic ejecta with energy, E approx 〉 10(exp 48) erg. These observations challenge the importance of progenitor metallicity for the production of a GRB, and suggest that other parameters also play a key role.
    Keywords: Astronomy
    Type: GSFC.JA.5904.2012
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-13
    Description: JAXA Hayabusa mission success-fully returned particles of the asteroid Itokawa to the earth in 2010. The recovered particles were carefully studied by the preliminary examination (PE) team and the obtained results are providing significant and unique information about the formation and evolution of meteorite parent bodies [1-6]. These particles further revealed that their mineral compositions and oxygen isotopes are close to those of equilibrated LL chon-drites [1,2], which matches with the observation at the orbit [7]. After the PE, JAXA distributed the samples as international AO study and we received 4 new and 3 PE particles. The new samples may contain some exot-ic components that have not been found by the PE study, and are of special interest. We have performed a detailed mineralogical and crystallographic study on these particles and here report the results.
    Keywords: Lunar and Planetary Science and Exploration
    Type: JSC-CN-30303 , Lunar and Planetary Science Conference; Mar 14, 2014 - Mar 21, 2014; The Woodlands, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-13
    Description: We report on our serendipitous pre-discovery detection and follow-up observations of the broad-lined Type Ic supernova (SN Ic) 2010ay at z = 0.067 imaged by the Pan-STARRS1 3pi survey just approximately 4 days after explosion. The supernova (SN) had a peak luminosity, MR approx. -20.2 mag, significantly more luminous than known GRB-SNe and one of the most luminous SNe Ib/c ever discovered. The absorption velocity of SN 2010ay is v Si (is) approx. 1910(exp 3) km s1 at approximately 40 days after explosion, 2-5 times higher than other broad-lined SNe and similar to the GRB-SN 2010bh at comparable epochs. Moreover, the velocity declines approximately 2 times slower than other SNe Ic-BL and GRB-SNe. Assuming that the optical emission is powered by radioactive decay, the peak magnitude implies the synthesis of an unusually large mass of 56Ni, MNi = 0.9 solar mass. Applying scaling relations to the light curve, we estimate a total ejecta mass, Mej (is) approx. 4.7 solar mass, and total kinetic energy, EK (is) approx. 11 10(exp 51) erg. The ratio of MNi to Mej is approximately 2 times as large for SN 2010ay as typical GRB-SNe and may suggest an additional energy reservoir. The metallicity (log(O/H)PP04 + 12 = 8.19) of the explosion site within the host galaxy places SN 2010ay in the low-metallicity regime populated by GRB-SNe, and (is) approximately 0.5(0.2) dex lower than that typically measured for the host environments of normal (broad-lined) SNe Ic. We constrain any gamma-ray emission with E(gamma) (is) approximately less than 6 10(exp 48) erg (25-150 keV), and our deep radio follow-up observations with the Expanded Very Large Array rule out relativistic ejecta with energy E (is) approximately greater than 10(exp 48) erg. We therefore rule out the association of a relativistic outflow like those that accompanied SN 1998bw and traditional long-duration gamma-ray bursts (GRBs), but we place less-stringent constraints on a weak afterglow like that seen from XRF 060218. If this SN did not harbor a GRB, these observations challenge the importance of progenitor metallicity for the production of relativistic ejecta and suggest that other parameters also play a key role.
    Keywords: Astrophysics
    Type: GSFC-E-DAA-TN16991 , The Astrophysical Journal; 756; 2; 184
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...