ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (7)
Collection
Years
  • 1
    Publication Date: 2019-06-28
    Description: The major targets for the gamma ray spectroscopy of supernovae are reviewed. The principle benefit of such observations is the insight provided into the mechanisms of supernova explosions, the distribution and nature of star forming regions in our Galaxy, and the history of the nucleosynthesis of our Galaxy. The emphasis is on two short lived species, Co-56 and Ti-44 which may be seen in individual events and two longer lived species, Al-26 and Fe-60, which can be seen as the cumulative production of many supernovae.
    Keywords: Space Radiation
    Type: ; 21-24
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-13
    Description: Expanding envelopes of compact objects that possess a buring region at the base of the envelope are commonly observed and modeled. In many cases, such as the late stages of classical nova, the expanding envelope develops into a stationary, optically thick wind of matter escaping from the star. In the usual theoretical formalism there is one more unknown than equations, with closure being obtained by the requirement that the solution pass through the singularity at the sonic point. It is shown analytically that the mass flux, which is one of the unknowns, is almost completely determined by the physical conditions near the base of the envelope just above the burning zone. The sonic point closure relation determines whether the expanding solution can develop into a wind solution. For a given core mass the range of possible wind solutions is an outcome of the great sensitivity of the mass flux to the inner luminosity. Solutions determined through numerical integrations are shown to lie entirely within the narrow analytic boundaries.
    Keywords: ASTROPHYSICS
    Type: The Astrophysical Journal, Part 1 (ISSN 0004-637X); 445; 1; p. 411-414
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-12
    Description: A numerical integration is undertaken of the integral expression for the thermal conductivity due to collisions of relativistic degenerate electrons and compared to the limiting-case analytic formula. The integration is designed to encompass all temperature/electron-plasma-frequency temperature ratios between the melting temperature and the Fermi temperature. High accuracy fits are demonstrated by interpolating the values of the integrals of the function and by using an asymptotic function by Urpin and Yakovlev (1980). The numerically integrated expression compares favorably to the limiting-case analytic asymptotic formula by Urpin and Yakovlev, and the results are valid for temperatures above and below the electron-plasma-frequency temperature. The present techniques can be used in stellar opacity calculations and in the study of the propagation of deflagration fronts of compact stellar remnants.
    Keywords: ASTROPHYSICS
    Type: Astrophysical Journal, Part 2 - Letters (ISSN 0004-637X); 390; 2 Ma; L107-L10
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-08-28
    Description: We determine the speeds, and many other physical properties, of flame fronts that propagate inward into degenerate and semidegenerate cores of carbon and oxygen (CO) and neon and oxygen (NeOMg) white dwarfs when such flames are bounded on their exterior by a convective region. Combustion in such fronts, per se, is incomplete, with only a small part of the initial mass function burned. A condition of balanced power is set up in the star where the rate of energy emitted as neutrinos from the convective region equals the power available from the unburned fuel that crosses the burning front. The propagation of the burning front itself is in turn limited by the temperature at the base of the convective shell, while cannot greatly exceed the adiabatic value. Solving for consistency between these two conditions gives a unique speed for the flame. Typical values for CO white dwarfs are a few hundredths of a centimeter per second. Flames in NeOMg mixtures are slower. Tables are presented in a form that can easily be implemented in stellar evolution codes and yield the rate at which the convective shell advances into the interior. Combining these velocities with the local equations for stellar structure, we find a minimum density for each gravitational potential below with the local equations for stellar structure, we find a minimum density for each gravitational potential below which the flame cannot propagate, and must die. Although detailed stellar models will have to be constructed to reslove some issues conclusively, our results that a CO white dwarf inginted at its edge will not burn carbon all the way to its center unless the mass of the white dwarf exceeds 0.8 solar mass. On the other hand, it is difficult to ignite carbon burning by compression alone anywhere in a white dwarf whose mass does not exceed 1.0 solar mass. Thus, compressionally ignited shell carbon burning in an accerting CO dwarf almost certainly propagates all the way to the center of the star. Implications for neutron star formation, and Type Ia supernova models, are briefly discussed. These are also applicable to massive stars in the about 10-12 solar mass range which ignite neon burning off center.
    Keywords: ASTROPHYSICS
    Type: Astrophysical Journal, Part 1 (ISSN 0004-637X); 420; 1; p. 348-363
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-08-28
    Description: The paper determines the physical properties - speed, width, and density structure - of conductive burning fronts in degenerate carbon-oxygen (C + O) and oxygen-neon-magnesium (O + Ne + Mg) compositions for a grid of initial densities and compositions. The dependence of the physical properties of the flame on the assumed values of nuclear reaction rates, the nuclear reaction network employed, the thermal conductivity, and the choice of coordinate system are investigated. The occurrence of accretion-induced collapse of a white dwarf is found to be critically dependent on the velocity of the nuclear conductive burning front and the growth rate of hydrodynamic instabilities. Treating the expanding area of the turbulent burning region as a fractal whose tile size is identical to the minimum unstable Rayleigh-Taylor wavelength, it is found, for all reasonable values of the fractal dimension, that for initial C + O or O + Ne + Mg densities above about 9 x 10 exp 9 g/cu cm the white dwarf should collapse to a neutron star.
    Keywords: ASTROPHYSICS
    Type: Astrophysical Journal, Part 1 (ISSN 0004-637X); 396; 2 Se; 649-667
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-08-28
    Description: Using the output from a grid of 60 Type II supernova models (Woosley & Weaver 1995) of varying mass (11 approx. less than (M/solar mass) approx. less than 40) and metallicity (0, 10(exp -4), 0.01, and 1 solar metallicity), the chemical evolution of 76 stable isotopes, from hydrogen to zinc, is calculated. The chemical evolution calculation employs a simple dynamical model for the Galaxy (infall with a 4 Gyr e-folding timescale onto a exponential dsk and 1/r(exp 2) bulge), and standard evolution parameters, such as a Salpeter initial mass function and a quadratic Schmidt star formation rate. The theoretical results are compared in detail with observed stellar abundances in stars with metallicities in the range -3.0 approx. less than (Fe/H) approx. less than 0.0 dex. While our discussion focuses on the solar neighborhood where there are the most observations, the supernova rates, an intrinsically Galactic quality, are also discussed.
    Keywords: ASTROPHYSICS
    Type: Astrophysical Journal Supplement Series (ISSN 0067-0049); 98; 2; p. 617-658
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-13
    Description: This white paper informs the nuclear astrophysics community and funding agencies about the scientific directions and priorities of the field and provides input from this community for the 2015 Nuclear Science Long Range Plan. It summarizes the outcome of the nuclear astrophysics town meeting that was held on August 21-23, 2014 in College Station at the campus of Texas AM University in preparation of the NSAC Nuclear Science Long Range Plan. It also reflects the outcome of an earlier town meeting of the nuclear astrophysics community organized by the Joint Institute for Nuclear Astrophysics (JINA) on October 9-10, 2012 Detroit, Michigan, with the purpose of developing a vision for nuclear astrophysics in light of the recent NRC decadal surveys in nuclear physics (NP2010) and astronomy (ASTRO2010). The white paper is furthermore informed by the town meeting of the Association of Research at University Nuclear Accelerators (ARUNA) that took place at the University of Notre Dame on June 12-13, 2014. In summary we find that nuclear astrophysics is a modern and vibrant field addressing fundamental science questions at the intersection of nuclear physics and astrophysics. These questions relate to the origin of the elements, the nuclear engines that drive life and death of stars, and the properties of dense matter. A broad range of nuclear accelerator facilities, astronomical observatories, theory efforts, and computational capabilities are needed. With the developments outlined in this white paper, answers to long standing key questions are well within reach in the coming decade.
    Keywords: Astrophysics; Nuclear Physics
    Type: GSFC-E-DAA-TN47214 , Progress in Particle and Nuclear Physics (ISSN 0146-6410); 94; 1-67
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...