ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (3)
  • 1
    Publication Date: 2019-07-13
    Description: Water availability is fundamental to societies and ecosystems, but our understanding of variations in hydroclimate (including extreme events, flooding, and decadal periods of drought) is limited because of a paucity of modern instrumental observations that are distributed unevenly across the globe and only span parts of the 20th and 21st centuries. Such data coverage is insufficient for characterizing hydroclimate and its associated dynamics because of its multidecadal to centennial variability and highly regionalized spatial signature. High-resolution (seasonal to decadal) hydroclimatic proxies that span all or parts of the Common Era (CE) and paleoclimate simulations from climate models are therefore important tools for augmenting our understanding of hydroclimate variability. In particular, the comparison of the two sources of information is critical for addressing the uncertainties and limitations of both while enriching each of their interpretations. We review the principal proxy data available for hydroclimatic reconstructions over the CE and highlight the contemporary understanding of how these proxies are interpreted as hydroclimate indicators. We also review the available last-millennium simulations from fully coupled climate models and discuss several outstanding challenges associated with simulating hydroclimate variability and change over the CE. A specific review of simulated hydroclimatic changes forced by volcanic events is provided, as is a discussion of expected improvements in estimated radiative forcings, models, and their implementation in the future. Our review of hydroclimatic proxies and last-millennium model simulations is used as the basis for articulating a variety of considerations and best practices for how to perform proxy-model comparisons of CE hydroclimate. This discussion provides a framework for how best to evaluate hydroclimate variability and its associated dynamics using these comparisons and how they can better inform interpretations of both proxy data and model simulations.We subsequently explore means of using proxy-model comparisons to better constrain and characterize future hydroclimate risks. This is explored specifically in the context of several examples that demonstrate how proxy-model comparisons can be used to quantitatively constrain future hydroclimatic risks as estimated from climate model projections.
    Keywords: Meteorology and Climatology
    Type: GSFC-E-DAA-TN50993 , Climate of the Past (e-ISSN 1814-9332); 13; 12; 1851-1900
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-13
    Description: Hydroclimate extremes critically affect human and natural systems, but there remain many unanswered questions about their causes and how to interpret their dynamics in the past and in climate change projections. These uncertainties are due, in part, to the lack of long-term, spatially resolved hydroclimate reconstructions and information on the underlying physical drivers for many regions. Here we present the first global reconstructions of hydroclimate and associated climate dynamical variables over the past two thousand years. We use a data assimilation approach tailored to reconstruct hydroclimate that optimally combines 2,978 paleoclimate proxy-data time series with the physical constraints of an atmosphere?ocean climate model. The global reconstructions are annually or seasonally resolved and include two spatiotemporal drought indices, near-surface air temperature, an index of North Atlantic variability, the location of the intertropical convergence zone, and monthly Nino indices. This database, called the Paleo Hydrodynamics Data Assimilation product (PHYDA), will provide a critical new platform for investigating the causes of past climate variability and extremes, while informing interpretations of future hydroclimate projections.
    Keywords: Meteorology and Climatology; Documentation and Information Science
    Type: GSFC-E-DAA-TN57055 , Scientific Data (e-ISSN 2052-4463); 5; 180086
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-08-24
    Description: Multidecadal "megadroughts" were a notable feature of the climate of the American Southwest over the Common era, yet we still lack a comprehensive theory for what caused these megadroughts and why they curiously only occurred before about 1600 CE. Here, we use the Paleo Hydrodynamics Data Assimilation product, in conjunction with radiative forcing estimates, to demonstrate that megadroughts in the American Southwest were driven by unusually frequent and cold central tropical Pacific sea surface temperature (SST) excursions in conjunction with anomalously warm Atlantic SSTs and a locally positive radiative forcing. This assessment of past megadroughts provides the first comprehensive theory for the causes of megadroughts and their clustering particularly during the Medieval era. This work also provides the first paleoclimatic support for the prediction that the risk of American Southwest megadroughts will markedly increase with global warming.
    Keywords: Meteorology and Climatology
    Type: GSFC-E-DAA-TN71642 , Science Advances; 5; 7; eaax0087
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...