ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • Weitere Quellen  (4)
Sammlung
Datenquelle
Erscheinungszeitraum
  • 1
    Publikationsdatum: 2011-09-13
    Beschreibung: Future NASA satellite detector systems must be cooled to the 0.1 K temperature range to meet the stringent energy resolution and sensitivity requirements demanded by mid-term astronomy missions. The development of adiabatic demagnetization refrigeration (ADR) materials that can efficiently cool from the passive radiative cooling limit of approx. 30 K down to sub-Kelvin under low magnetic fields (H less than or equal to 3 T) would represent a significant improvement in space-based cooling technology. Governed by these engineering goals, our efforts have focused on quantifying the change in magnetic entropy of rare-earth garnets and perovskites. Various compositions within the gadolinium gallium iron garnet solid solution series (GGIG, Gd3Ga(5-x)Fe(x)O12, 0.00 less than or equal to X less than or equal to 5.00) and gadolinium aluminum perovskite (GAP, GdAlO3) have been synthesized via an organometallic complex approach and confirmed with powder x-ray diffraction. The magnetization of the GGIG and GAP materials has been measured as a function of composition (0.00 less than or equal to X less than or equal to 5.00), temperature (2 K less than or equal to T less than or equal to 30 K) and applied magnetic field (0 T less than or equal to H less than or equal to 3 T). The magnetic entropy change (DeltaS(sub mag)) between 0 T and 3 T was determined from the magnetization data. In the GGIG system, DeltaS(sub mag) was compositionally dependent; Fe(sup 3+) additions up to X less than or equal to 2.44 increased DeltaS(sub mag) at T 〉 5 K. For GAP, DeltaS(sub mag) was similar to that of GGIG, X = 0.00, both in terms of magnitude and temperature dependence at T 〉 10 K. However, the DeltaS(sub mag) of GAP at T 〈 10 K was less than the endmember GGIG composition, X = 0.00, and exhibited maximum approx. 5 K.
    Schlagwort(e): Instrumentation and Photography
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Publikationsdatum: 2013-08-31
    Beschreibung: The inverse levitation of a high temperature superconductor polymer composite consisting of powdered quench melt growth Ba2YCu3O(7-delta) and cyanoacrylate is reported. Magnetic hysteresis loop measurements for the composite are compared to those measured for the bulk material prior to powdering. Differences in the flux pining capability between the two material forms are small but significant.
    Schlagwort(e): SOLID-STATE PHYSICS
    Materialart: NASA. Goddard Space Flight Center, AMSAHTS 1990: Advances in Materials Science and Applications of High Temperature Superconductors; p 181-185
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Publikationsdatum: 2013-08-31
    Beschreibung: The bismuth based high T sub c superconductors can be processed via an amorphous Bi-Pb-Sr-Ca-Cu oxide. The amorphous oxides were prepared by melting the constituent powders in an alumina crucible at 1200 C in air followed by pouring the liquid onto an aluminum plate, and rapidly pressing with a second plate. In the amorphous state, no crystalline phase was identified in the powder x ray diffraction pattern of the quenched materials. After heat treatment at high temperature the amorphous materials crystallized into a glass ceramic containing a large fraction of the Bi2Sr2Ca2Cu3O(x) phase T sub c = 110 K. The processing method, crystallization, and results of dc electrical resistivity and ac magnetic susceptibility measurements are discussed.
    Schlagwort(e): SOLID-STATE PHYSICS
    Materialart: NASA. Goddard Space Flight Center, AMSAHTS 1990: Advances in Materials Science and Applications of High Temperature Superconductors; p 127-136
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    Publikationsdatum: 2013-08-31
    Beschreibung: Researchers produced superconducting ceramics of the Bi-Pb-Sr-Ca-Cu-O system started from a glass. To form the glass, the mixed oxide powder was melted at 1200 C in air. The liquid was quenched rapidly by pouring it onto an aluminum plate and rapidly pressing with another plate. The quenched compound was in the form of black amorphous solid, whose x-ray powder pattern has no crystalline peaks. After heat treatment at high temperatures, the glass crystallized into a superconductor. The crystalline phases in the superconductor identified using x-ray diffraction patterns. These phases were that associated with the superconducting phases of T(sub c) = 80 K (Bi2Ca1Sr2Cu2Ox) and of T(sub c) = 110 K (Bi2Ca2Sr2Cu3Ox). The dc resistivity and the ac susceptibility of these superconductors were studied.
    Schlagwort(e): SOLID-STATE PHYSICS
    Materialart: NASA, Goddard Space Flight Center, AMSAHTS 1990: Advances in Materials Science and Applications of High Temperature Superconductors; p 110
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...