ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (5)
  • 1
    Publication Date: 2020-05-13
    Description: A new climate model has been developed that employs a multi-resolution dynamical core for the sea ice-ocean component. In principle, the multi-resolution approach allows one to use enhanced horizontal resolution in dynamically active regions while keeping a coarse-resolution setup otherwise. The coupled model consists of the atmospheric model ECHAM6 and the finite element sea ice-ocean model (FESOM). In this study only moderate refinement of the unstructured ocean grid is applied and the resolution varies from about 25 km in the northern North Atlantic and in the tropics to about 150 km in parts of the open ocean; the results serve as a benchmark upon which future versions that exploit the potential of variable resolution can be built. Details of the formulation of the model are given and its performance in simulating observed aspects of the mean climate is described. Overall, it is found that ECHAM6–FESOM realistically simulates many aspects of the observed climate. More specifically it is found that ECHAM6–FESOM performs at least as well as some of the most sophisticated climate models participating in the fifth phase of the Coupled Model Intercomparison Project. ECHAM6–FESOM shares substantial shortcomings with other climate models when it comes to simulating the North Atlantic circulation.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-01-31
    Description: A new global climate model setup using FESOM2.0 for the sea ice‐ocean component and ECHAM6.3 for the atmosphere and land surface has been developed. Replacing FESOM1.4 by FESOM2.0 promises a higher efficiency of the new climate setup compared to its predecessor. The new setup allows for long‐term climate integrations using a locally eddy‐resolving ocean. Here it is evaluated in terms of (1) the mean state and long‐term drift under preindustrial climate conditions, (2) the fidelity in simulating the historical warming, and (3) differences between coarse and eddy‐resolving ocean configurations. The results show that the realism of the new climate setup is overall within the range of existing models. In terms of oceanic temperatures, the historical warming signal is of smaller amplitude than the model drift in case of a relatively short spin‐up. However, it is argued that the strategy of “de‐drifting” climate runs after the short spin‐up, proposed by the HighResMIP protocol, allows one to isolate the warming signal. Moreover, the eddy‐permitting/resolving ocean setup shows notable improvements regarding the simulation of oceanic surface temperatures, in particular in the Southern Ocean.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2023-07-27
    Description: The Arctic has warmed more than twice as fast as the global average since the late twentieth century, a phenomenon known as Arctic amplification (AA). Recently, there have been considerable advances in understanding the physical contributions to AA, and progress has been made in understanding the mechanisms that link it to midlatitude weather variability. Observational studies overwhelmingly support that AA is contributing to winter continental cooling. Although some model experiments support the observational evidence, most modelling results show little connection between AA and severe midlatitude weather or suggest the export of excess heating from the Arctic to lower latitudes. Divergent conclusions between model and observational studies, and even intramodel studies, continue to obfuscate a clear understanding of how AA is influencing midlatitude weather.
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2021-09-27
    Description: A new global climate model setup using FESOM2.0 for the sea ice-ocean component and ECHAM6.3 for the atmosphere and land surface has been developed. Replacing FESOM1.4 by FESOM2.0 promises a higher efficiency of the new climate setup compared to its predecessor. The new setup allows for long-term climate integrations using a locally eddy-resolving ocean. Here it is evaluated in terms of (1) the mean state and long-term drift under preindustrial climate conditions, (2) the fidelity in simulating the historical warming, and (3) differences between coarse and eddy-resolving ocean configurations. The results show that the realism of the new climate setup is overall within the range of existing models. In terms of oceanic temperatures, the historical warming signal is of smaller amplitude than the model drift in case of a relatively short spin-up. However, it is argued that the strategy of “de-drifting” climate runs after the short spin-up, proposed by the HighResMIP protocol, allows one to isolate the warming signal. Moreover, the eddy-permitting/resolving ocean setup shows notable improvements regarding the simulation of oceanic surface temperatures, in particular in the Southern Ocean.
    Keywords: 551.6 ; FESOM ; ocean model ; climate model ; unstructured mesh ; Finite Volume
    Language: English
    Type: map
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-03-23
    Description: Many state‐of‐the‐art climate models do not simulate the Atlantic Water (AW) layer in the Arctic Ocean realistically enough to address the question of future Arctic Atlantification and its associated feedback. Biases concerning the AW layer are commonly related to insufficient resolution and excessive mixing in the ocean component as well as unrealistic Atlantic‐Arctic Ocean exchange. Based on sensitivity experiments with FESOM1.4, the ocean–sea‐ice component of the global climate model AWI‐CM1, we show that even if all impediments for simulating AW realistically are addressed in the ocean model, new biases in the AW layer develop after coupling to an atmosphere model. By replacing the wind forcing over the Arctic with winds from a coupled simulation we show that a common bias in the atmospheric sea level pressure (SLP) gradient and its associated wind bias lead to differences in surface stress and Ekman transport. Fresh surface water gets redistributed leading to changes in halosteric height distribution. Those changes lead to strengthening of the anticyclonic surface circulation in the Canadian Basin, so that the deep counterflow carrying warm AW gets reversed and a warm bias in the Canadian Basin develops. The SLP and anticyclonic wind bias in the Nordic Seas weaken the cyclonic circulation leading to reduced AW transport into the Arctic Ocean through Fram Strait but increased AW transport through the Barents Sea Opening. These effects together lead to a cold bias in the Eurasian Basin. An underestimation of sea ice concentration can significantly amplify the induced ocean biases.
    Description: Plain Language Summary: Coupled global climate models are used to predict anthropogenic climate change along with its impacts. The Arctic has experienced amplified warming in the recent decades compared to global mean warming and therefore is one region of intense climate research. In this context Atlantification of the Arctic Ocean has become a high priority topic. Atlantification describes the increasing impact of oceanic heat from the Atlantic Water (AW) layer of the Arctic Ocean on the sea ice cover. In climate models, the direction and strength of simulated AW circulation around the Arctic Ocean is known to be sensitive to ocean grid resolution, parametrization, boundary and surface forcing or a combination thereof. Here we show that biases in the atmospheric component of climate models can interrupt and even reverse the simulated AW circulation at depth. Such biases can be further amplified by a negative bias in simulated sea ice cover. This study shows how these surface biases can negatively impact the deep ocean circulation.
    Description: Key Points: Many state‐of‐the‐art climate models fail to simulate the properties of the Atlantic Water layer in the Arctic Ocean realistically. Biases in Arctic sea level pressure and surface winds in atmosphere models can reverse Atlantic Water circulation. The underestimation of sea‐ice cover amplifies this problem further.
    Description: European Union's Horizon 2020 Research and Innovation program
    Description: Helmholtz Association http://dx.doi.org/10.13039/501100009318
    Keywords: ddc:551.46
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...