ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (7)
  • 1
    Publication Date: 2009-05-17
    Description: 40 years ago two new solar phenomena were described: supergranulation and the five-minute solar oscillations. While the oscillations have since been explained and exploited to determine the properties of the solar interior, the supergranulation has remained unexplained. The supergranules, appearing as convective-like cellular patterns of horizontal outward flow with a characteristic diameter of 30 Mm and an apparent lifetime of 1 day, have puzzling properties, including their apparent superrotation and the minute temperature variations over the cells. Using a 60-day sequence of data from the MDI (Michelson-Doppler Imager) instrument onboard the SOHO (Solar and Heliospheric Observatory) spacecraft, we show that the supergranulation pattern is formed by a superposition of traveling waves with periods of 5-10 days. The wave power is anisotropic with excess power in the direction of rotation and toward the equator, leading to spurious rotation rates and north-south flows as derived from correlation analyses. These newly discovered waves could play an important role in maintaining differential rotation in the upper convection zone by transporting angular momentum towards the equator.
    Keywords: Solar Physics
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-13
    Description: We consider inversion techniques for investigating the structure and dynamics of the solar interior as functions of radius and latitude. In particular, we look at the problem of inferring the radial and latitudinal dependence of the Sun's internal rotation, using a fully two-dimensional least-squares inversion algorithm. Concepts such as averaging kernels, measures of resolution, and trade-off curves, which have previously been used in the one-dimensional case, are generalized to facilitate a comparison of two-dimensional methods. We investigate the weighting given to different modes and discuss the implications of this for observational strategies. As an illustration we use a mode set whose properties are similar to those expected for data from the GONG network.
    Keywords: SOLAR PHYSICS
    Type: Astrophysical Journal, Part 1 (ISSN 0004-637X); 433; 1; p. 389-416
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-13
    Description: We present an outline of an algorithm to generate artificial helioseismic time-series, taking into account as much as possible of the knowledge we have on solar oscillations. The hope is that it will be possible to find the causes of some of the systematic errors in analysis algorithms by testing them with such artificial time-series.
    Keywords: SOLAR PHYSICS
    Type: NASA-CR-194612 , NAS 1.26:194612 , AARHUS-ASTRO-93-12 , IFA-93/40 , (ISSN 0906-3870)
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-13
    Description: The medium-l program of the Michelson Doppler Imager instrument on board SOHO provides continuous observations of oscillation modes of angular degree, l, from 0 to approximately 300. The data for the program are partly processed on board because only about 3% of MDI observations can be transmitted continuously to the ground. The on-board data processing, the main component of which is Gaussian-weighted binning, has been optimized to reduce the negative influence of spatial aliasing of the high-degree oscillation modes. The data processing is completed in a data analysis pipeline at the SOI Stanford Support Center to determine the mean multiplet frequencies and splitting coefficients. The initial results show that the noise in the medium-l oscillation power spectrum is substantially lower than in ground-based measurements. This enables us to detect lower amplitude modes and, thus, to extend the range of measured mode frequencies. This is important for inferring the Sun's internal structure and rotation. The MDI observations also reveal the asymmetry of oscillation spectral lines. The line asymmetries agree with the theory of mode excitation by acoustic sources localized in the upper convective boundary layer. The sound-speed profile inferred from the mean frequencies gives evidence for a sharp variation at the edge of the energy-generating core. The results also confirm the previous finding by the GONG (Gough et al., 1996) that, in a thin layer just beneath the convection zone, helium appears to be less abundant than predicted by theory. Inverting the multiplet frequency splittings from MDI, we detect significant rotational shear in this thin layer. This layer is likely to be the place where the solar dynamo operates. In order to understand how the Sun works, it is extremely important to observe the evolution of this transition layer throughout the 11-year activity cycle.
    Keywords: Solar Physics
    Type: NASA-CR-204703 , NAS 1.26:204703 , Solar Physics; 170; 43-61
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-13
    Description: In time-distance helioseismology, the travel time of acoustic waves is measured between various points on the solar surface. To some approximation, the waves can be considered to follow ray paths that depend only on a mean solar model, with the curvature of the ray paths being caused by the increasing sound speed with depth below the surface. The travel time is effected by various inhomogeneities along the ray path, including flows, temperature inhomogeneities, and magnetic fields. By measuring a large number of times between different locations and using an inversion method, it is possible to construct 3-dimensional maps of the subsurface inhomogeneities. The SOI/MDI experiment on SOHO has several unique capabilities for time-distance helioseismology. The great stability of the images observed without benefit of an intervening atmosphere is quite striking. It his made it possible for us to detect the travel time fo separations of points as small as 2.4 Mm in the high-resolution mode of MDI (0.6 arc sec 1/pixel). This has enabled the detection of the supergranulation flow. Coupled with the inversion technique, we can now study the 3-dimensional evolution of the flows near the solar surface.
    Keywords: Astronomy
    Type: NASA-CR-204702 , NAS 1.26:204702 , Solar Physics; 170; 63-73
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-13
    Description: Helioseismic analysis of solar global oscillations allows investigation of the internal structure of the Sun. One important test of the reliability of the inferences from helioseismology is that the results from independent sets of contemporaneous data are consistent with one another. Here we compare mode frequencies from the Global Oscillation Network Group and Michelson Doppler Imager on board SOHO and resulting inversion results on the Sun's internal structure. The average relative differences between the data sets are typically less than 1 x 10(exp -5) substantially smaller than the formal errors in the differences; however, in some cases the frequency differences show a systematic behavior that might nonetheless influence the inversion results. We find that the differences in frequencies are not a result of instrumental effects but are almost entirely related to the data pipeline software. Inversion of the frequencies shows that their differences do not result in any significant effects on the resulting inferences on solar structure. We have also experimented with fitting asymmetric profiles to the oscillation power spectra and find that, compared with the symmetric fits, this causes no significant change in the inversion results.
    Keywords: Solar Physics
    Type: The Astrophysical Journal; 591; 432-445
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-13
    Description: The Helioseismic and Magnetic Imager (HMI) investigation will study the solar interior using helioseismic techniques as well as the magnetic field near the solar surface. The HMI instrument is part of the Solar Dynamics Observatory (SDO) that was launched on 11 February 2010. The instrument is designed to measure the Doppler shift, intensity, and vector magnetic field at the solar photosphere using the 6173 Fe I absorption line. The instrument consists of a front-window filter, a telescope, a set of wave plates for polarimetry, an image-stabilization system, a blocking filter, a five-stage Lyot filter with one tunable element, two wide-field tunable Michelson interferometers, a pair of 4096(exo 2) pixel cameras with independent shutters, and associated electronics. Each camera takes a full-disk image roughly every 3.75 seconds giving an overall cadence of 45 seconds for the Doppler, intensity, and line-of-sight magnetic-field measurements and a slower cadence for the full vector magnetic field. This article describes the design of the HMI instrument and provides an overview of the pre-launch calibration efforts. Overviews of the investigation, details of the calibrations, data handling, and the science analysis are provided in accompanying articles.
    Keywords: Spacecraft Instrumentation and Astrionics; Solar Physics
    Type: GSFC-E-DAA-TN9944 , Solar Physics (ISSN 0038-0938); 275; 2-Jan; 229-259
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...