ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (5)
  • 1
    Publication Date: 2019-07-13
    Description: Ventilation-perfusion (VA/Q) inequality has been shown to increase with exercise. Potential mechanisms for this increase include nonuniform pulmonary vasoconstriction, ventilatory time constant inequality, reduced large airway gas mixing, and development of interstitial pulmonary edema. We hypothesized that persistence of VA/Q mismatch after ventilation and cardiac output subside during recovery would be consistent with edema; however, rapid resolution would suggest mechanisms related to changes in ventilation and blood flow per se. Thirteen healthy males performed near-maximal cycle ergometry at an inspiratory PO2 of 91 Torr (because hypoxia accentuates VA/Q mismatch on exercise). Cardiorespiratory variables and inert gas elimination patterns were measured at rest, during exercise, and between 2 and 30 min of recovery. Two profiles of VA/Q distribution behavior emerged during heavy exercise: in group 1 an increase in VA/Q mismatch (log SDQ of 0.35 +/- 0.02 at rest and 0.44 +/- 0.02 at exercise; P less than 0.05, n = 7) and in group 2 no change in VA/Q mismatch (n = 6). There were no differences in anthropometric data, work rate, O2 uptake, or ventilation during heavy exercise between groups. Group 1 demonstrated significantly greater VA/Q inequality, lower vital capacity, and higher forced expiratory flow at 25-75% of forced vital capacity for the first 20 min during recovery than group 2. Cardiac index was higher in group 1 both during heavy exercise and 4 and 6 min postexercise. However, both ventilation and cardiac output returned toward baseline values more rapidly than did VA/Q relationships. Arterial pH was lower in group 1 during exercise and recovery. We conclude that greater VA/Q inequality in group 1 and its persistence during recovery are consistent with the hypothesis that edema occurs and contributes to the increase in VA/Q inequality during exercise. This is supported by observation of greater blood flows and acidosis and, presumably therefore, higher pulmonary vascular pressures in such subjects.
    Keywords: Life Sciences (General)
    Type: Journal of applied physiology (Bethesda, Md. : 1985) (ISSN 8750-7587); 72; 5; 1657-67
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-13
    Description: It is not known whether the asymptotic behavior of whole body O2 consumption (VO2) at maximal work rates (WR) is explained by similar behavior of VO2 in the exercising legs. To resolve this question, simultaneous measurements of body and leg VO2 were made at submaximal and maximal levels of effort breathing normoxic and hypoxic gases in seven trained male cyclists (maximal VO2, 64.7 +/- 2.7 ml O2.min-1.kg-1), each of whom demonstrated a reproducible VO2-WR asymptote during fatiguing incremental cycle ergometry. Left leg blood flow was measured by constant-infusion thermodilution, and total leg VO2 was calculated as the product of twice leg flow and radial arterial-femoral venous O2 concentration difference. The VO2-WR relationships determined at submaximal WR's were extrapolated to maximal WR as a basis for assessing the body and leg VO2 responses. The differences between measured and extrapolated maximal VO2 were 235 +/- 45 (body) and 203 +/- 70 (leg) ml O2/min (not significantly different). Plateauing of leg VO2 was associated with, and explained by, plateauing of both leg blood flow and O2 extraction and hence of leg VO2. We conclude that the asymptotic behavior of whole body VO2 at maximal WRs is a direct reflection of the VO2 profile at the exercising legs.
    Keywords: Life Sciences (General)
    Type: Journal of applied physiology (Bethesda, Md. : 1985) (ISSN 8750-7587); 73; 3; 1114-21
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-13
    Description: In a recent study by Tsukimoto et al. (J. Appl. Physiol. 68: 2488-2493, 1990), CO2 inhalation appeared to reduce the size of the high ventilation-perfusion ratio (VA/Q) mode commonly observed in anesthetized mechanically air-ventilated dogs. In that study, large tidal volumes (VT) were used during CO2 inhalation to preserve normocapnia. To separate the influences of CO2 and high VT on the VA/Q distribution in the present study, we examined the effect of inspired CO2 on the high VA/Q mode using eight mechanically ventilated dogs (4 given CO2, 4 controls). The VA/Q distribution was measured first with normal VT and then with increased VT. In the CO2 group at high VT, data were collected before, during, and after CO2 inhalation. With normal VT, there was no difference in the size of the high VA/Q mode between groups [10.5 +/- 3.5% (SE) of ventilation in the CO2 group, 11.8 +/- 5.2% in the control group]. Unexpectedly, the size of the high VA/Q mode decreased similarly in both groups over time, independently of the inspired PCO2, at a rate similar to the fall in cardiac output over time. The reduction in the high VA/Q mode together with a simultaneous increase in alveolar dead space (estimated by the difference between inert gas dead space and Fowler dead space) suggests that poorly perfused high VA/Q areas became unperfused over time. A possible mechanism is that elevated alveolar pressure and decreased cardiac output eliminate blood flow from corner vessels in nondependent high VA/Q regions.
    Keywords: Aerospace Medicine
    Type: Journal of applied physiology (Bethesda, Md. : 1985) (ISSN 8750-7587); 72; 3; 1057-63
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-08-27
    Description: Mechanisms of altered pulmonary gas exchange during water immersion were studied in 12 normal males: 6 young (aged 20-29) and 6 older (aged 40-45). It is concluded that, in young subjects with closing volume (CV) less than expiratory reserve volume (ERV), gas exchange was enhanced during immersion, because normal ventilation-perfusion relations were preserved, and by mass balance, the ventilation/O2 uptake changes elevated arterial P(O2). In older males with CV greater than ERV and 52 percent of tidal volume below CV, immersion-induced airways closure during tidal breathing was associated with minimally increased shunt that did not significantly impair gas exchange. It is suggested that airways closure of this degree is of little importance to gas exchange.
    Keywords: AEROSPACE MEDICINE
    Type: Journal of Applied Physiology (ISSN 0161-7567); 72; 64-72
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-03-21
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...