ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-07-19
    Description: The MODIS and MISR aerosol products were designed nearly two decades ago for the purpose of climate applications. Since launch of Terra in 1999, these two sensors have provided global, quantitative information about column-integrated aerosol properties, including aerosol optical depth (AOD) and relative aerosol type parameters (such as Angstrom exponent). Although primarily designed for climate, the air quality (AQ) community quickly recognized that passive satellite products could be used for particulate air quality monitoring and forecasting. However, AOD and particulate matter (PM) concentrations have different units, and represent aerosol conditions in different layers of the atmosphere. Also, due to low visible contrast over brighter surface conditions, satellite-derived aerosol retrievals tend to have larger uncertainty in urban or populated regions. Nonetheless, the AQ community has made significant progress in relating column-integrated AOD at ambient relative humidity (RH) to surface PM concentrations at dried RH. Knowledge of aerosol optical and microphysical properties, ambient meteorological conditions, and especially vertical profile, are critical for physically relating AOD and PM. To make urban-scale maps of PM, we also must account for spatial variability. Since surface PM may vary on a finer spatial scale than the resolution of standard MODIS (10 km) and MISR (17km) products, we test higher-resolution versions of MODIS (3km) and MISR (1km research mode) retrievals. The recent (July 2011) DISCOVER-AQ campaign in the mid-Atlantic offers a comprehensive network of sun photometers (DRAGON) and other data that we use for validating the higher resolution satellite data. In the future, we expect that the wealth of aircraft and ground-based measurements, collected during DISCOVER-AQ, will help us quantitatively link remote sensed and ground-based measurements in the urban region.
    Keywords: Environment Pollution
    Type: GSFC.ABS.6077.2012 , 2011 American Geophysical Union (AGU) Fall Meeting; Dec 05, 2011 - Dec 09, 2011; San Francisco, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-12
    Description: We present an analysis of the effect of aerosol forward scattering on the accuracy of aerosol optical depth (AOD) measured by CIMEL Sun photometers. The effect is quantified in terms of AOD and solar zenith angle using radiative transfer modeling. The analysis is based on aerosol size distributions derived from multi-year climatologies of AERONET aerosol retrievals. The study shows that the modeled error is lower than AOD calibration uncertainty (0.01) for the vast majority of AERONET level 2 observations, ~99.53%. Only ~0.47% of the AERONET database corresponding mostly to dust aerosol with high AOD and low solar elevations has larger biases. We also show that observations with extreme reductions in direct solar irradiance do not contribute to level 2 AOD due to low Sun photometer digital counts below a quality control cutoff threshold.
    Keywords: Earth Resources and Remote Sensing; Geosciences (General)
    Type: GSFC-E-DAA-TN6963
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-11-27
    Description: Aerosol volume size distribution (VSD) retrievals from the Aerosol Robotic Network (AERONET) aerosol monitoring network were obtained during multiple DRAGON (Distributed Regional Aerosol Gridded Observational Network) campaigns conducted in Maryland, California, Texas and Colorado from 2011 to 2014. These VSD retrievals from the field campaigns were used to make comparisons with near-simultaneous in situ samples from aircraft profiles carried out by the NASA Langley Aerosol Group Experiment (LARGE) team as part of four campaigns comprising the DISCOVER-AQ (Deriving Information on Surface conditions from Column and Vertically Resolved Observations Relevant to Air Quality) experiments. For coincident (1 h) measurements there were a total of 91 profile-averaged fine-mode size distributions acquired with the LARGE ultra-high sensitivity aerosol spectrometer (UHSAS) instrument matched to 153 AERONET size distributions retrieved from almucantars at 22 different ground sites. These volume size distributions were characterized by two fine-mode parameters, the radius of peak concentration (rpeak_conc) and the VSD fine-mode width (widthpeak_conc). The AERONET retrievals of these VSD fine-mode parameters, derived from ground-based almucantar sun photometer data, represent ambient humidity values while the LARGE aircraft spiral profile retrievals provide dried aerosol (relative humidity; RH〈 20 %) values. For the combined multiple campaign dataset, the average difference in rpeak_conc was 0:0330:035 m (ambient AERONET values were 15.8% larger than dried LARGE values), and the average difference in widthpeak_conc was 0:0420:039 m (AERONET values were 25.7% larger). For a subset of aircraft data, the LARGE data were adjusted to account for ambient humidification. For these cases, the AERONETLARGE average differences were smaller, with rpeak_conc differing by 0:0110:019 m (AERONET values were 5.2% larger) and widthpeak_conc average differences equal to 0:0300:037 m (AERONET values were 15.8% larger).
    Keywords: Earth Resources and Remote Sensing
    Type: GSFC-E-DAA-TN75752 , Atmospheric Measurement Techniques (ISSN 1867-1381) (e-ISSN 1867-8548); 12; 10; 5289–5301
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-13
    Description: High aerosol loading over the northern Indian subcontinent can result in poor air quality leading to human health consequences and climate perturbations. The international 2008 TIGERZ experiment intensive operational period (IOP) was conducted in the Indo \Gangetic Plain (IGP) around the industrial city of Kanpur (26.51degN, 80.23deg E), India, during the premonsoon (April-June). Aerosol Robotic Network (AERONET) Sun photometers performed frequent measurements of aerosol properties at temporary sites distributed within an area covering 50 sq km around Kanpur to characterize pollution and dust in a region where complex aerosol mixtures and semi \bright surface effects complicate satellite retrieval algorithms. TIGERZ IOP Sun photometers quantified aerosol optical depth (AOD) increases up to 0.10 within and downwind of the city, with urban emissions accounting for 10 C20% of the IGP aerosol loading on deployment days. TIGERZ IOP area \averaged volume size distribution and single scattering albedo retrievals indicated spatially homogeneous, uniformly sized, spectrally absorbing pollution and dust particles. Aerosol absorption and size relationships were used to categorize black carbon and dust as dominant absorbers and to identify a third category in which both black carbon and dust dominate absorption.Moderate Resolution Imaging Spectroradiometer (MODIS) AOD retrievals with the lowest quality assurance (QA 〉 or = 0) flags were biased high with respect to TIGERZ IOP area \averaged measurements. MODIS AOD retrievals with QA 0 had moderate correlation (R(sup 2) = 0.52-69) with the Kanpur AERONET site, whereas retrievals with QA 〉 0 were limited in number. Mesoscale \distributed Sun photometers quantified temporal and spatial variability of aerosol properties, and these results were used to validate satellite retrievals.
    Keywords: Geophysics
    Type: GSFC.JA.00426.2012 , Journal of Geophysical Research; 116
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-08-14
    Description: Over the past 24 years, the AErosol RObotic NETwork (AERONET) program has provided highly accurate remote-sensing characterization of aerosol optical and physical properties for an increasingly extensive geographic distribution including all continents and many oceanic island and coastal sites. The measurements and retrievals from the AERONET global network have addressed satellite and model validation needs very well, but there have been challenges in making comparisons to similar parameters from in situ surface and airborne measurements. Additionally, with improved spatial and temporal satellite remote sensing of aerosols, there is a need for higher spatial-resolution ground-based remote-sensing networks. An effort to address these needs resulted in a number of field campaign networks called Distributed Regional Aerosol Gridded Observation Networks (DRAGONs) that were designed to provide a database for in situ and remote-sensing comparison and analysis of local to mesoscale variability in aerosol properties. This paper describes the DRAGON deployments that will continue to contribute to the growing body of research related to meso- and microscale aerosol features and processes. The research presented in this special issue illustrates the diversity of topics that has resulted from the application of data from these networks.
    Keywords: Earth Resources and Remote Sensing
    Type: GSFC-E-DAA-TN57191 , Atmospheric Chemistry and Physics (ISSN 1680-7316) (e-ISSN 1680-7324); 18; 2; 655-671
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...