ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2011-08-24
    Description: This paper reports results from NASA's Chemical Instrumentation and Test Evaluation (CITE 3) during which airborne measurements of dimethyl sulfide (DMS) from six instruments were intercompared. Represented by the six instruments are three fundamentally different detection principles (flame photometric, mass spectrometric, and electron capture after fluorination); three collection/preconcentration methods (cryogenic, gold wool absorption, and polymer absorbent); and three types of oxidant scrubbers (solid phase alkaline, aqueous reactor, and cotton). The measurements were made over the Atlantic Ocean in August/September 1989 during flights from NASA's Wallops Flight Center, Virginia, and Natal, Brazil. The majority of the intercomparisons are at DMS mixing ratios less than 50 pptv. Results show that instrument agreement is of the order of a few pptv for mixing ratios less than 50 pptv and to within about 15% above 50 pptv. Statistically significant (95% confidence) measurement biases were noted among some of the techniques. However, in all cases, any bias is small and within the accuracy of the measurements and prepared DMS standards. Thus, we conclude that the techniques intercompared during CITE 3 provide equally valid measurements of DMS in the range of a few pptv to 100 pptv (upper range of the intercomparisons).
    Keywords: ENVIRONMENT POLLUTION
    Type: Journal of Geophysical Research (ISSN 0148-0227); 98; D12; p. 23,373-23,388
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2011-08-24
    Description: This paper reports results of NASA's Chemical Instrumentation and Test Evaluation (CITE 3) during which airborne measurements for carbonyl sulfide (COS), hydrogen sulfide (H2S), and carbon disulfide (CS2) were intercompared. Instrumentation included a gas chromatograph using flame photometric detection (COS, H2S, and CS2), a gas chromatograph using mass spectrometric detection (COS) and CS2), a gas chromatograph using fluorination and subsequent SF6 detection via electron capture (COS and CS2), and the Natusch technique (H2S). The measurements were made over the Atlantic Ocean east of North and South America during flights from NASA's Wallops Flight Center, Virginia, and Natal, Brazil, in August/September 1989. Most of the intercomparisons for H2S and CS2 were at mixing ratios less than 25 pptv and less than 10 pptv, respectively, with a maximum mixing ratio of about 100 pptv and 50 pptv, respectively. Carbonyl sulfide intercomparisons were at mixing ratios between 400 and 600 pptv. Measurements were intercompared from data bases constructed from time periods of simultaneous or overlapping measurements. Agreement among the COS techniques averaged about 5%, and individual measurements were generally within 10%. For H2S and at mixing ratio greater than 25 pptv, the instruments agreed on average to about 15%. At mixing ratios less than 25 pptv the agreement was about 5 pptv. For CS2 (mixing ratios less than 50 pptv), two techniques agreed on average to about 4 pptv, and the third exhibited a bias (relative to the other two) that varied in the range of 3-7 pptv. CS2 mixing ratios over the ocean east of Natal as measured by the gas chromatograph-mass spectrometer technique were only a few pptv and were below the detection limits of the other two techniques. The CITE 3 data are used to estimate the current uncertainty associated with aircraft measurements of COS, H2S, and CS2 in the remote troposphere.
    Keywords: ENVIRONMENT POLLUTION
    Type: Journal of Geophysical Research (ISSN 0148-0227); 98; D12; p. 23,353-23,372
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-13
    Description: Measurements of atmospheric dimethylsulfide (DMS), hydrogen sulfide (H2S), and carbon disulfide (CS2) were made over the North and South Atlantic Ocean as part of the Global Tropospheric Experiment/Chemical Instrumentation Test and Evaluation (GTE/CITE 3) project. DMS and CS2 samples were collected and analyzed using an automated gas chromatography/flame photometric detection system with a sampling frequency of 10 min. H2S samples were collected using silver nitrate impregnated filters and analyzed by fluorescence quenching. The DMS data from both hemispheres have a bimodal distribution. Over the North Atlantic this reflects the difference between marine and continental air masses. Over the South Atlantic it may reflect differences in the sea surface source of DMS, corresponding to different air mass source regions. The median boundary layer H2S and CS2 levels were significantly higher in the northern hemisphere than the southern hemisphere, reflecting the higher frequency of samples influenced by pollutant and/or coastal emissions. Composite vertical profiles of DMS and H2S are similar to each other, are consistent with a sea surface source. Vertical profiles of CS2 have maxima in the free troposphere, implicating a continental source. The low levels of H2S and CS2 found in the southern hemisphere constrain the role of these compounds in global budgets to significantly less than previously estimated.
    Keywords: ENVIRONMENT POLLUTION
    Type: Journal of Geophysical Research (ISSN 0148-0227); 98; D12; p. 23,397-23,409
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-08-28
    Description: The mesoscale variability of dimethyl sulfide (DMS) and ocean color is explored to determine the feasibility of a predictive relationship. During NASA's Global Tropospheric Experiment/Chemical Instrumentation Test and Evaluation (GTE/CITE 3), simultaneous shipboard and aircraft studies were carried out in the North Atlantic, followed by aircraft studies in the South Atlantic. Surface concentrations of chlorophyll alpha were measured with an airborne spectroradiometer, the Ocean Data Acquisition System (ODAS), with simultaneous determinations of tropospheric DMS. Shipboard measurements of DMS in air and water as well as in situ chlorophyll alpha were taken in the North Atlantic. No relation was observed between shipboard aquatic DMS and chlorophyll alpha or primary productivity. Higher levels of aqueous DMS were not always reflected by atmospheric DMS, although shipboard and aircraft measurements of atmospheric DMS agreed very well. A significant relationship between atmospheric DMS and ocean color was seen once at low altitudes in both the North and South Atlantic only under clean air conditions. Atmospheric DMS levels during the North Atlantic experiment were probably lowered by the presence of mostly polluted air masses in the study area and were, overall, probably not representative of the in situ sea-to-air flux of DMS. Changes in concentration of aircraft-sensed chlorophyllous pigments were not reflected by atmospheric DMS. If a predictive algorithm is to be found, phytoplankton blooms should probably be the first place to study an ocean color-DMS relationship.
    Keywords: ENVIRONMENT POLLUTION
    Type: Journal of Geophysical Research (ISSN 0148-0227); 98; D12; p. 23,469-23,476
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-10
    Description: This project involved the design and construction of a new instrument for airborne measurement of DMS and SO2. The instrument is intended for use on field missions to study the global atmospheric sulfur cycle. The ultimate scientific goal is to provide insight into the mechanisms of atmospheric transport and transformations impacting both natural and anthropogenic sulfur emissions. This report summarizes the progress made to date and the goals for future work on the project. The PI's for this project have recently relocated from the University of Miami to the University of California, Irvine, and a request has been made to transfer remaining funds to UCI. All equipment associated with this project has been transferred to UCI. The instrument design goal was to develop an instrument roughly one quarter the size and weight of currently available airborne instrumentation used for DMS and S02 measurements. Another goal was full automation, to allow unattended operation for the duration of a P-3 or DC-8 flight. The original performance design specifications for the instrument are given.
    Keywords: Environment Pollution
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2017-04-11
    Description: The domain of the surface ocean and lower atmosphere is a complex, highly dynamic component of the Earth system. Better understanding of the physics and biogeochemistry of the air–sea interface and the processes that control the exchange of mass and energy across that boundary define the scope of the Surface Ocean-Lower Atmosphere Study (SOLAS) project. The scientific questions driving SOLAS research, as laid out in the SOLAS Science Plan and Implementation Strategy for the period 2004–2014, are highly challenging, inherently multidisciplinary and broad. During that decade, SOLAS has significantly advanced our knowledge. Discoveries related to the physics of exchange, global trace gas budgets and atmospheric chemistry, the CLAW hypothesis (named after its authors, Charlson, Lovelock, Andreae and Warren), and the influence of nutrients and ocean productivity on important biogeochemical cycles, have substantially changed our views of how the Earth system works and revealed knowledge gaps in our understanding. As such SOLAS has been instrumental in contributing to the International Geosphere–Biosphere Programme (IGBP) mission of identification and assessment of risks posed to society and ecosystems by major changes in the Earth’s biological, chemical and physical cycles and processes during the Anthropocene epoch. SOLAS is a bottom-up organization, whose scientific priorities evolve in response to scientific developments and community needs, which has led to the launch of a new 10-year phase. SOLAS (2015–2025) will focus on five core science themes that will provide a scientific basis for understanding and projecting future environmental change and for developing tools to inform societal decision-making.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2016-01-19
    Type: Conference or Workshop Item , NonPeerReviewed
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Journal of Geophysical Research: Atmospheres, 115 (D2). D02304.
    Publication Date: 2018-02-06
    Description: A system for the shipboard measurement of air-sea CO2 fluxes by eddy covariance was developed and tested. The system was designed to reduce two major sources of experimental uncertainty previously reported. First, the correction for in situ water vapor fluctuations (the “Webb” correction) was reduced by 97% by drying the air sample stream. Second, motion sensitivity of the gas analyzer was reduced by using an open-path type sensor that was converted to a closed-path configuration to facilitate drying of the air stream. High-quality CO2 fluxes were obtained during 429 14 min flux intervals during two cruises in the North Atlantic. The results suggest that the gas analyzer resolved atmospheric CO2 fluctuations well below its RMS noise level. This noise was uncorrelated with the vertical wind and therefore filtered out by the flux calculation. Using climatological data, we estimate that the techniques reported here could enable high-quality measurements of air-sea CO2 flux over much of the world oceans.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-18
    Description: We use isoprene and related field measurements from three different ocean data sets together with remotely sensed satellite data to model global marine isoprene emissions. We show that using monthly mean satellite-derived chl a concentrations to parameterize isoprene with a constant chl a normalized isoprene production rate underpredicts the measured oceanic isoprene concentration by a mean factor of 19 ± 12. Improving the model by using phytoplankton functional type dependent production values and by decreasing the bacterial degradation rate of isoprene in the water column results in only a slight underestimation (factor 1.7 ± 1.2). We calculate global isoprene emissions of 0.21 Tg C for 2014 using this improved model, which is twice the value calculated using the original model. Nonetheless, the sea-to-air fluxes have to be at least 1 order of magnitude higher to account for measured atmospheric isoprene mixing ratios. These findings suggest that there is at least one missing oceanic source of isoprene and, possibly, other unknown factors in the ocean or atmosphere influencing the atmospheric values. The discrepancy between calculated fluxes and atmospheric observations must be reconciled in order to fully understand the importance of marine-derived isoprene as a precursor to remote marine boundary layer particle formation.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-09-24
    Description: Continuous high-resolution underway measurements of dimethyl sulfide (DMS) and isoprene in the ocean surface were conducted from Germany to South Africa in November 2008. DMS, total dimethylsulfoniopropionate (DMSPt), isoprene and 19'-hexanoyloxyfucoxanthin (19'-hex) correlated in nitrogen-depleted regions when they were clustered by nitrogen to phosphorous ratio (N:P). The 19'-hex-containing algae groups might be a common source of DMS, DMSPt, and isoprene in the low N: P regions. Additionally, DMS and isoprene correlated in nitrate-depleted regions when they were clustered against nitrate concentrations. Correlations between DMS and isoprene were also found within nitrate-depleted eddies encountered along the cruise track. Eddies with N: P of similar to 2.8 showed the highest positive correlations between DMS and isoprene. We conclude that the DMS/isoprene relationships in the eastern Atlantic Ocean were influenced by nutrient availability, with implications for using nutrients to predict the DMS and isoprene concentrations over a range of oceanographic areas depleted in nitrogen
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...